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Abstract 

Background: The research gap addressed in this study is the applicability of deep 
neural network (NN) models on wearable sensor data to recognize different activi-
ties performed by patients with Parkinson’s Disease (PwPD) and the generalizability 
of these models to PwPD using labeled healthy data.

Methods: The experiments were carried out utilizing three datasets containing weara-
ble motion sensor readings on common activities of daily living. The collected readings 
were from two accelerometer sensors. PAMAP2 and MHEALTH are publicly available 
datasets collected from 10 and 9 healthy, young subjects, respectively. A private data-
set of a similar nature collected from 14 PwPD patients was utilized as well. Deep NN 
models were implemented with varying levels of complexity to investigate the impact 
of data augmentation, manual axis reorientation, model complexity, and domain adap-
tation on activity recognition performance.

Results: A moderately complex model trained on the augmented PAMAP2 dataset 
and adapted to the Parkinson domain using domain adaptation achieved the best 
activity recognition performance with an accuracy of 73.02%, which was significantly 
higher than the accuracy of 63% reported in previous studies. The model’s F1 score 
of 49.79% significantly improved compared to the best cross-testing of 33.66% F1 
score with only data augmentation and 2.88% F1 score without data augmentation 
or domain adaptation.

Conclusion: These findings suggest that deep NN models originating on healthy data 
have the potential to recognize activities performed by PwPD accurately and that data 
augmentation and domain adaptation can improve the generalizability of models 
in the healthy-to-PwPD transfer scenario. The simple/moderately complex architec-
tures tested in this study could generalize better to the PwPD domain when trained 
on a healthy dataset compared to the most complex architectures used. The findings 
of this study could contribute to the development of accurate wearable-based activity 
monitoring solutions for PwPD, improving clinical decision-making and patient out-
comes based on patient activity levels.
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Background
Human activity recognition (HAR) with wearable sensors has gained immense popu-
larity due to its promising applications in numerous fields, such as health monitoring, 
sports performance analysis, and patient rehabilitation [1]. Utilizing powerful, deep neu-
ral network (NN) models in HAR has significantly improved the accuracy and robust-
ness of activity recognition systems [2]. However, the generalizability of deep NN models 
remains a significant challenge, especially when dealing with small datasets or data 
from a different domain. This limitation is particularly relevant for Parkinson’s disease 
(PD) patients, whose disease symptoms affect movement patterns, making it challeng-
ing to generalize results obtained from healthy populations. PD is a neurodegenerative 
disorder that affects movement patterns and is characterized by tremors, rigidity, and 
bradykinesia.

The need to develop accurate and robust deep NN models for HAR in patients with 
PD (PwPD) is prevalent. By having access to accurate activity recognition data, physi-
cians can gain insights into a patient’s daily routines and physical behaviors. This knowl-
edge allows them to fine-tune their therapeutic approaches to align with each patient’s 
unique activity patterns and lifestyle. Such personalized adjustments can be instrumen-
tal in achieving optimal treatment efficacy, leading to enhanced patient outcomes and 
improved quality of life [3]. In addition, these tools offer patients the means to auton-
omously monitor and understand the relationship between their physical activity lev-
els and the intensity of their symptoms. This understanding, in turn, paves the way for 
informed lifestyle modifications, enabling better symptom management.

Wearable sensor data from the healthy population are easier to collect in larger quan-
tities with better data quality and are more readily available to the public. However, 
collecting labeled data from PwPD at different stages of the disease during different 
activities of daily living can be costly and burdensome. This often leads to insufficient 
quantities of labeled data, making it challenging to develop accurate and generalizable 
models. The application of wearable sensors and deep NN models for human activity 
recognition has been widely investigated in the literature. However, most studies focus 
on healthy individuals or specific disease populations, such as stroke patients or elderly 
individuals [1, 2].

Limited research has been conducted on developing accurate classification models 
for activity recognition in the context of a healthy-to-disease domain shift, particu-
larly in the case of PD. The only study similar to our work that explored cross-testing 
of healthy-to-PwPD data is the work of Albert et al. [4], which utilized smartphone 
accelerometer data and traditional machine learning models to classify healthy and 
PD activity data across 9 activities. However, they observed a significant reduction 
in performance with only 63.5% accuracy when directly applying the same models 
to PD data, with an improvement observed after utilizing PD data in training—high-
lighting the need for tailored tools and analyses for specific patient populations. Two 
other papers related to the present paper are Jalloul et al. [5] and Som et al. [6]. Jalloul 
et al. developed a k-nearest neighbors model using data on 7 activities from healthy 
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individuals and only one PwPD, achieving higher classification accuracy for healthy 
individuals and only 44.3% accuracy for the PwPD. This highlights the need for fur-
ther adaptation when applying activity classification to PwPD. Som et  al. [6] devel-
oped a binary classifier to classify walking vs. non-walking using a healthy source 
dataset and a target dataset mixed with 16 healthy and 18 PwPD data. They showed 
the feasibility of leveraging healthy data to develop classifiers for the PwPD with 
maximum accuracy and F1 score of 73.81%. However, their target domain contained 
healthy data. The present study differs from previous works as we present the first 
investigation of the state-of-the-art deep NN-based methods with raw data for apply-
ing healthy-to-PwPD human activity recognition.

Data augmentation and transfer learning have been the focus of several studies to 
enhance classification accuracy in applications other than activity recognition for PwPD. 
For example, Kalouris et  al. [7] applied rotation, jitter, scaling, and permutation data 
augmentation methods on a with older adults performing 6 activities and used two pub-
licly available healthy datasets—PAMAP2 and UCI-HAR—as the source domains. They 
achieved a maximum accuracy of 84.89% utilizing a supervised, homogeneous, diver-
gence-based domain adaptation method with various convolutional neural networks 
(CNNs) as fixed feature extractors for the target dataset containing 6 activities. They 
found that the rotation and permutation methods were the most successful when trans-
ferring across domains. In another study, Um et  al. [8] tested the same augmentation 
techniques as Kalouris et al. [7] to detect medication states in Parkinson’s patients and 
found that the best-performing augmentation methods alleviated sensor position vari-
ability and event locations in an arbitrarily segmented window.

Domain adaptation strategies, such as the state-of-the-art Domain Adversarial Neural 
Network (DANN) proposed by Ganin et al. [9], have outperformed other techniques in 
the image classification task on the MNIST and Office datasets. However, there are few 
investigations into the advantages of such domain adaptation strategies to enhance gen-
eralizability from healthy to diseased populations, particularly using wearable data. The 
closest studies that utilize domain adaptation techniques for cross-domain activity clas-
sification are the works of Chen et al. [10] and Hosseini et al. [11], but not for the spe-
cific application of healthy-to-PwPD cross-testing for activity recognition. Chen et  al. 
[10] proposed a technique called Stratified Transfer Learning for domain adaptation, 
which involved source domain selection and activity transfer to capture domain-specific 
properties. They conducted similar work by classifying activities from the healthy-sub-
ject data in PAMAP and MHEALTH and cross-testing between datasets. Their tech-
nique achieved an F1 score of 55% when testing with chest data from MHEALTH as 
the source to chest data from PAMAP as the target, with F1 scores ranging from 39 to 
59% for other cross-testing cases. Hosseini et  al. [11] employed a Bidirectional LSTM 
Recurrent Neural Network with Maximum Mean Discrepancy loss to reduce confusion 
between the source and target domains. Their objective was similar to the current study 
as they utilized adult HAR data as source data to predict activities for a children’s activ-
ity dataset. They reported binary F1 scores for each of the 5 activities reported, with a 
maximum score of approximately 70% for standing, 63% for walking, and 52% for sitting. 
However, none of the previous studies investigated using data augmentation techniques 
and domain adaptation for activity recognition applications in PwPD data.
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This paper addresses the challenge of generalizing deep NN models trained on young, 
healthy populations to older PD patients for healthy-to-PwPD cross-domain activity rec-
ognition. The experiments uniquely focus on exploring model complexity alongside data 
augmentation, manual sensor axes reorientation, and domain adaptation methods to 
improve accuracy and robustness across healthy-to-PwPD domains. The study expands 
upon the authors’ preliminary work [12] and provides this comprehensive investigation 
into the generalizability of deep NN models in this specific scenario to help guide future 
research in this field.

Results
The study utilizes CNN models from the HAR literature [10, 13–19] that vary in com-
plexity in terms of the number of layers and parameters, as well as a base CNN model 
designed with a more simple architecture compared to the other models. Figure 1 com-
pares the number of layers and parameters between the models implemented in the 
work. The models were trained in a k-fold cross-validation, holding out each subject’s 
data for testing. The best model from each cross-validation was loaded and cross-tested 

Fig. 1 The figure compares the number of layers (A) and parameters (B) in the implemented CNN 
architectures
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directly against data of a different domain, both in healthy-to-healthy and healthy-to-
PwPD test cases. Including the healthy-to-healthy test cases was intended to serve as 
a baseline comparison for results and justification for methods used for the healthy-to-
PwPD test case. Any degradation of accuracy values in the healthy-to-PwPD scenario 
compared to the healthy-to-healthy test case will be directly quantified. The effects of 
data augmentation, manual sensor axes reorientation, and deep domain adaptation were 
explored in the cross-testing scenarios. The data augmentation methods utilized in the 
study aimed to accomplish two major goals—namely, simulating different sensor place-
ments and mimicking sensor noise due to Parkinson’s motor complications. In practice, 
3D wearable body sensors can exhibit different orientations of their X, Y, and Z axes 
depending on the design of the actual sensor itself and the placement of the sensor on 
the body. This can introduce significant variability in activity motion data that decreases 
model generalizability. Therefore, in addition to data augmentation on the training sam-
ples, we manually reoriented the sensor axes between datasets to match the data sam-
ples better. Last, we utilized a state-of-the-art domain adaptation technique—Domain 
Adversarial Neural Network (DANN)—in another set of tests to learn discriminative 
and domain invariant features between domains. All three aforementioned methods 
were incorporated to increase the models’ ability to generalize to the PwPD domain, 
considering they were all trained on healthy data.

Two publicly available healthy datasets, MHEALTH [20] and PAMAP2 [21], were uti-
lized for the study, alongside a private Parkinson’s disease dataset referred to as PD data 
throughout the paper. Each dataset consisted of subjects performing various activities of 
daily living while wearing IMU sensors. Wrist and ankle sensor data were utilized in this 
study. For PAMAP2, the sensors were affixed to the subject’s dominant-side body. For 
MHEALTH, the sensors were placed on the right wrist and left ankle. For the PD data-
set, sensors were placed on the patient’s most affected side. All the data were preproc-
essed to maintain similar activities, units, and window segmentation across datasets. 
The ’Methods’ section outlines further details regarding the datasets and data preproc-
essing steps.

The study used different performance metrics depending on the cross-testing type. In 
the case of healthy-to-healthy cross-testing, the performance metric used was the accu-
racy between the actual and predicted labels, as both datasets were balanced. F1 scores 
were also reported for completion. However, for the healthy-to-PwPD cross-testing, 
average binary accuracy and F1 scores were used to evaluate the models’ performance. 
This decision was made due to the imbalanced nature of the PD dataset, which required 
taking both true positives and false negatives into account [22]. In addition, when it 
came to domain adaptation for healthy-to-PwPD cross-testing, our analyses focused 
on the average binary F1 scores, as the average binary accuracy did not provide much 
insight into the performance of the models. Using different performance metrics for dif-
ferent types of cross-testing provided a more comprehensive evaluation of the effective-
ness of the considered deep NN models.

Cross‑validation

The first set of tests involved leave-one-subject-out cross-validation, where each archi-
tecture was tested on a single subject while trained on all the remaining subjects. 
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The model parameters were tuned using 80% and 20% subject splits during training. 
Table  1 presents the average testing accuracy values across eightfold for the subjects 
in PAMAP2 and tenfold for the subjects in MHEALTH. The architectures are ordered 
based on the number of convolutional layers, from smallest to largest. The highest aver-
age accuracy for the original MHEALTH data was 94.57% using the Kalouris architec-
ture, which decreased slightly to 91.92% with data augmentation. Among the augmented 
MHEALTH data, the Burns architecture had the highest average accuracy at 94.98%, a 
4.49% increase in average accuracy from the original data. For PAMAP2, the base model 
achieved the highest average accuracy on the original data at 83.98%, which decreased 
to 80.74% with data augmentation. The highest data augmentation average accuracy was 
89.91% with the Burns model, which was a 13.19% increase from the original PAMAP2 
data.

Cross‑testing

Direct cross-testing was conducted between domains in healthy-to-healthy and 
healthy-to-PwPD test cases in the second set of experiments. When testing the mod-
els on the PD dataset, the predicted labels were binarized to evaluate each activity 
individually. For instance, to assess the model’s performance on walking, the pre-
dicted labels for cycling and running were labeled as non-walking, while predicted 
walking labels were retained as walking. The direct cross-testing analysis provides 
insights into the models’ effectiveness in addressing domain shifts in human activity 
recognition. Hence, the best-performing fold model from the source dataset’s cross-
validation was loaded and applied directly to the target dataset, and the mean and 
standard deviation used to normalize the source data were also applied to the tar-
get data. The accuracy of the model predictions in the healthy-to-healthy test cases, 
with PAMAP2 and MHEALTH as the source datasets, is shown in Tables  2 and 3, 
respectively. These tables also show the effects of data augmentation, axis reorienta-
tion, and model layer complexity on the performance. Across all architectures and 
datasets, manual axes reorientation significantly increased accuracy in the source 
data’s original and augmented test cases. The combination of data augmentation and 
manual reorientation in the source and target datasets had the most successful direct 

Table 1 The table presents the average cross-validation accuracy results for different models, where 
’MH Orig’ refers to the original MHEALTH data, ’MH Aug’ refers to the augmented MHEALTH data, and 
the same notation applies to PAMAP2

The average values are shown, with F1 scores presented in parentheses

Base 
Model

O’Halloran 
[13]

Wan [14] Burns [15] Chen/Jordao 
[10, 16]

Kalouris 
[17]

Yatbaz 
[18]

Rueda [19]

MH Orig 91.70
(91.30)

88.15
(87.73)

93.36
(96.13)

90.49
(89.72)

58.11
(54.79)

94.57
(94.36)

81.06
(80.83)

87.21
(86.35)

MH Aug 86.72
(85.73)

92.04
(91.64)

93.51
(93.52)

94.98
(94.95)

84.19
(83.36)

91.92
(91.91)

90.34
(90.01)

91.77
(91.68)

P2 Orig 83.98
(84.06)

82.74
(82.57)

80.74
(80.89)

76.72
(76.47)

69.03
(67.38)

81.09
(81.32)

79.69
(79.57)

83.01
(82.96)

P2 Aug 80.74
(78.50)

86.61
(86.57)

82.21
(87.26)

89.91
(89.86)

80.82
(77.84)

88.10
(88.17)

85.39
(85.34)

87.34
(87.22)
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cross-testing performance. In this test case, the base model had the best performance 
of 87.43% with PAMAP2 as the source, and Burns architecture had the best perfor-
mance of 76.15% with MHEALTH as the source. These models were among the sim-
pler architectures in terms of layers and parameters. Based on these trends, it was 
decided to reorient the PD data to match the source data in all healthy-to-PwPD test 
cases.

The next experiment assessed how well the models trained on healthy data, includ-
ing data augmentation and manual reorientation, could predict the PD dataset’s walk-
ing, sitting, and standing activities. Table  4 shows the average binary accuracy and 
F1 scores of predictions on PwPD activities, with MHEALTH and PAMAP2-trained 
models as the source. Both datasets use the same notation for data augmentation, as 
previously mentioned. However, the accuracy values do not represent the results due 
to the large class imbalance in the PD dataset. The PD dataset includes 654 walk-
ing samples, 2843 sitting samples, and 3042 standing samples. Therefore, the average 
binary F1 scores for each PD activity are reported in Table 4 to represent the results 
better. From the F1 scores in Table 4, it can be observed that data augmentation plays 
a significant role when cross-testing from a healthy dataset to a PD dataset. The first 
two rows mostly indicate a 0% F1 score without data augmentation. However, with 

Table 2 The PAMAP2 to MHEALTH direct cross-testing accuracy results

‘MH Reorient’ refers to MHEALTH with the sensor axes reoriented to match PAMAP2 (the source), and ‘P2 Aug’ refers to 
augmented PAMAP2 data. The values are shown, with F1 scores presented in parentheses

Base 
Model

O’Halloran 
[13]

Wan [14] Burns 
[15]

Chen/
Jordao 
[10, 16]

Kalouris 
[17]

Yatbaz [18] Rueda 
[19]

Source: P2 Orig
Target: MH Orig

3.14
(0.95)

7.28
(7.15)

3.71
(1.84)

2.93
(0.85)

12.87
(9.46)

5.85
(7.11)

5.85
(6.37)

9.71
(12.27)

Source: P2 Orig
Target: MH Reorient

48.16
(43.95)

35.75
(34.33)

38.41
(36.49)

36.83
(35.18)

36.46
(33.61)

29.97
(27.57)

53.00
(50.41)

34.02
(25.86)

Source: P2 Aug
Target: MH Orig

43.74
(41.76)

54.43
(52.38)

37.96
(40.79)

44.05
(43.79)

32.48
(30.56)

55.03
(53.46)

57.31
(53.50)

41.90
(42.88)

Source: P2 Aug
Target: MH Reorient

87.43
(87.33)

73.52
(73.29)

72.36
(71.27)

77.01
(76.12)

68.49
(63.91)

74.01
(72.86)

82.63
(81.67)

79.07
(79.16)

Table 3 The MHEALTH to PAMAP2 direct cross-testing accuracy results

‘P2 Reorient’ refers to PAMAP2 with the sensor axes reoriented to match MHEALTH (the source), and ‘MH Aug’ refers to 
augmented MHEALTH data. The values are shown, with F1 scores presented in parentheses

Base 
Model

O’Halloran 
[13]

Wan [14] Burns 
[15]

Chen/
Jordao  
[10, 16]

Kalouris 
[17]

Yatbaz [18] Rueda 
[19]

Source: MH Orig
Target: P2 Orig

3.49
(2.45)

14.67
(5.94)

12.63
(7.79)

24.73
(13.57)

6.40
(3.52)

14.88
(10.76)

15.36
(10.79)

5.50
(3.75)

Source: MH Orig
Target: P2 Reorient

57.90
(55.23)

57.28
(53.65)

61.95
(59.59)

53.77
(50.83)

37.38
(28.90)

58.75
(57.62)

43.71
(43.61)

67.91
(65.28)

Source: MH Aug
Target: P2 Orig

43.29
(40.86)

52.88
(48.75)

42.50
(39.67)

47.42
(44.27)

24.86
(22.09)

47.89
(44.86)

43.35
(40.68)

47.49
(43.51)

Source: MH Aug
Target: P2 Reorient

66.74
(64.58)

63.42
(59.84)

66.27
(63.83)

76.15
(75.96)

64.08
(60.94)

71.84
(70.12)

65.56
(63.40)

69.65
(67.68)
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data augmentation, the F1 score significantly increased for 15 of the 16 trials, with a 
33.84% increase in the case using the O’Halloran model with augmented MHEALTH 
data as the source and reoriented PD as the target. This leads to the highest F1 score 
when MHEALTH is the source, being 36.72% (O’Halloran model), and 33.66% when 
PAMAP2 is the source (the base model).

To further visualize and analyze the base model’s performance before and after data 
augmentation in the PAMAP2-to-PwPD test case, the confusion matrices are reported 
in Fig. 2. These matrices show how the model classified each activity compared to one 
another as a binary prediction, such as ’walking’ vs. ’not walking.’ The results indicate 
that the models tended to largely or completely misclassify entire groups of activities. 
However, data augmentation alleviated this issue, enabling the models to differentiate 
between activities better and obtain a higher F1 score. Despite employing techniques 
such as regularization, early stopping, and the strategic use of validation sets to prevent 

Table 4 The binary accuracy and F1 scores for cross-testing single and combined source datasets 
on the PD dataset

The average values are shown, with F1 scores presented in parentheses. The notation for data augmentation applies to both 
the MHEALTH and PAMAP2 datasets. ‘PD Reorient’ indicates PD data with sensor axes reoriented to match the source data, 
or to PAMAP2 in the case of the combined source datasets

Base 
Model

O’Halloran 
[13]

Wan [14] Burns 
[15]

Chen/
Jordao 
[10, 16]

Kalouris 
[17]

Yatbaz [18] Rueda 
[19]

Source: P2 Orig
Target: PD Reorient

66.67
(0)

66.67
(0)

66.67
(0)

66.67
(0)

66.67
(0)

66.67
(0)

66.67
(0)

66.67
(0)

Source: MH Orig
Target: PD Reorient

66.67
(0)

62.38
(2.88)

66.67
(0)

66.67
(0)

66.67
(0)

66.67
(0)

66.67
(0)

66.67
(0)

Source: P2 Aug
Target: PD Reorient

65.23
(33.66)

62.86
(26.27)

64.32
(28.63)

66.46
(0)

66.07
(16.50)

63.89
(22.48)

65.78
(17.81)

61.26
(17.82)

Source: MH Aug
Target: PD Reorient

72.18
(30.78)

70.64
(36.72)

71.17
(35.55)

66.01
(19.14)

67.45
(11.82)

64.34
(28.15)

68.53
(25.81)

68.63
(34.66)

Source: P2 Aug AND
MH Reorient Aug
Target: PD Reorient

55.56
(35.80)

71.25
(44.96)

73.74
(49.04)

66.37
(1.30)

63.85
(16.51)

66.67
(0)

66.67
(0)

67.37
(25.13)

Fig. 2 Confusion matrices for base model in PAMAP2-to-PwPD test case before and after data augmentation
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overfitting, the method without data augmentation struggled to detect walking episodes. 
This challenge is likely attributed to the distinct walking patterns exhibited by Parkin-
son’s patients, especially those in advanced stages, which can markedly differ from those 
of healthy individuals. Given that our dataset predominantly features PwPD in their 
advanced stages, with an average disease duration of 10 ± 4 years, this presented signifi-
cant challenges in accurately distinguishing traditional walking patterns.

To further verify our conclusions, we conducted an experiment combining the healthy 
datasets (MHEALTH and PAMAP2) into one dataset. Since it has been observed that a 
larger number of training data results in better model performance, we ran an experi-
ment to test whether combining PAMAP2 and MHEALTH into one large training data-
set would improve model performance for predicting the activity of the PD dataset. For 
these experiments, we combined augmented PAMAP2 with augmented MHEALTH, 
which was reoriented to PAMAP2 sensor axes for consistency. Augmented datasets 
were combined because models performed better with augmented training data in our 
prior experiments. We reoriented the PD dataset to PAMAP2 axes and used it as the 
testing dataset for the model. The results of these experiments can be found in the fifth 
row of Table  4. The results when using combined MHEALTH and PAMAP2 datasets 
for training were better than using a single source dataset in most cases, particularly for 
the models with simpler architectures. When the datasets are combined, the highest F1 
score is 49.04% (Wan model). Similar to the experiments where we used a single data-
set as the source/training dataset, it can be observed that the highest F1 scores occur 
with the simplest architectures tested, suggesting that decreased model complexity can 
help generalize between domains. In addition, combining training datasets improved 
the evaluation metrics in most cases, suggesting that this can be a valuable technique to 
investigate further.

We performed another experiment to examine how the accuracy of activity recogni-
tion models for PD patients is affected by the amount of healthy subject data used in 
training. This investigation aimed to determine if increasing the size of the source data-
set would improve the model’s ability to generalize from healthy to PD subjects, con-
sidering their distinct movement patterns. Our findings indicated that incorporating 
more healthy subject data into the training set generally led to higher accuracy in clas-
sifying PD patient activities. However, the increase in accuracy was not consistent across 
all new data additions, suggesting a complex relationship between the amount of data 
and the performance of the models. The complete details of this analysis, including the 
methodology, data processing, and a full discussion of the results, are presented in the 
Additional file 1 under Section S1.

Domain adaptation

In this set of experiments, the DANN domain adaptation method was applied to the 
healthy-to-healthy and healthy-to-PwPD cases before cross-testing. No labels from 
the test data were used with the domain adaptation method. We use a separate source 
(training) and target (testing) dataset when using a DANN. We have a healthy source 
dataset (PAMAP2 or MHEALTH or both combined) and a target data (PD data in this 
case). The augmented source data with reoriented target data were used for these tests 
since it consistently improved results in the previous experiments. After normalization, 
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the best-performing model from the source dataset’s cross-validation was loaded and 
applied directly to the target dataset.

DANN was first applied to the healthy-to-healthy test cases. The average accuracy 
results when PAMAP2 and MHEALTH were used as the source data for cross-testing 
are presented in Table  5. These results show that cross-testing with domain adapta-
tion resulted in the best accuracy of 88.37% for PAMAP2 as the source and 76.01% for 
MHEALTH as the source, using Chen [10] and Jordao [16] architectures. These results 
were comparable to those obtained without domain adaptation, indicating that domain 
adaptation did not significantly improve generalizability. Moreover, the average accuracy 
for cross-testing across all architectures was higher than that with DANN for both cases 
where the source dataset is PAMAP2 and MHEALTH, and the target is the opposite. 
Although DANN did not perform as expected, the HAR literature consistently aligns 
with domain adaptation results. Furthermore, while DANN performed better than 
cross-testing in some cases, their architectures consistently misclassified some labels.

Figure  3 shows the tSNE plots of the Chen/Jordao model’s architecture [10, 16] for 
DANN, with PAMAP2 as the source and MHEALTH as the target. The figure demon-
strates that DANN aligned the domain spaces between the source and target. However, 
the blue, orange, and green dots overlap in the center, indicating that the model had dif-
ficulty distinguishing between standing, sitting, and lying down during training. The red 
and purple dots also overlap in Fig. 3A, indicating that the walking and climbing stairs 
activities may have also been indistinguishable. The classes in the target MHEALTH data 
tSNE plot (Fig.  3B) are well-separated, but there is a similar overlap between walking 
and climbing stairs, as well as an overlap between sitting and standing, indicating the 
challenge of accurately classifying these activities. The confusion matrix for this test case 
is included in Fig. 3C for better visualization. It shows that the model had difficulty pre-
dicting some activities, such as sitting, standing, and climbing stairs, while performing 
well for the others.

The domain adaptation techniques were then tested on the healthy-to-PwPD case for 
each architecture. The binary F1 score and accuracy results are presented in Table  6. 
When PAMAP2 was used as the source, domain adaptation performed better in five out 
of eight tests than cross-testing without DANN. Furthermore, domain adaptation was 
more effective for more complex models, achieving F1 scores in the mid-high 40% range. 
When MHEALTH was used as the source, domain adaptation performed slightly better 
for more complex models. Notably, models trained on PAMAP2 performed better than 

Table 5 The average cross-testing accuracy and F1 scores, in parentheses, with domain adaptation 
for PAMAP2 and MHEALTH

The data augmentation notation applies to the MHEALTH and PAMAP2 source datasets. ‘PD Reorient’ indicates PD data with 
sensor axes reoriented to match the source data

Base 
Model

O’Halloran 
[13]

Wan [14] Burns [15] Chen/
Jordao 
[10, 16]

Kalouris 
[17]

Yatbaz 
[18]

Rueda [19]

Source: P2 Aug
Target: MH Reorient

14.17
(3.52)

77.39
(76.68)

43.15
(79.50)

80.21
(79.70)

88.37
(86.85)

80.72
(80.89)

73.50
(73.03)

70.50
(69.96)

Source: MH Aug
Target: P2 Reorient

49.55
(40.21)

63.01
(62.46)

63.17
(54.15)

75.96
(76.05)

76.01
(74.27)

77.12
(75.34)

64.82
(64.80)

15.81
(4.32)
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models trained on MHEALTH when applied to the PD dataset. This can be because the 
PAMAP2 dataset is much larger, particularly with data augmentation, which provides 
more training samples for the models to successfully classify the PD dataset.

The average F1 score of cross-testing of PAMAP2 and MHEALTH individually 
on the PD dataset for each architecture is shown in Fig.  4. The figure also shows the 
results for architecture models with different complexities, as indicated in Fig.  1A. 
Overall, data augmentation and domain adaptation improved the models’ generaliz-
ability from healthy to diseased populations. Lower complexity architectures, such as 
the base model and those in O’Halloran [13] and Wan [14], benefited most from data 
augmentation, while mid-level complexity architectures benefited more from domain 

Fig. 3 tSNE plots with DANN applied for the PAMAP2-to-MHEALTH test case using Chen/Jordao architecture 
[10, 16]. A Augmented PAMAP2 as the source data, and B reoriented MHEALTH as the target data. C 
Confusion matrix on target MHEALTH, where the labels represent classes: standing, sitting, lying, walking, 
climbing stairs, cycling, and running

Table 6 PAMAP2 and MHEALTH to PD cross-testing binary accuracy and F1 Scores with Domain 
Adaptation

The average values are shown, with F1 scores presented in parentheses. The notation for data augmentation applies to both 
the MHEALTH and PAMAP2 datasets. ‘PD Reorient’ indicates PD data with sensor axes reoriented to match the source data

Base 
Model

O’Halloran 
[13]

Wan 
[14]

Burns 
[15]

Chen/
Jordao [10, 
16]

Kalouris 
[17]

Yatbaz 
[18]

Rueda 
[19]

Source: P2 Aug
Target: PD Reorient

40.01
(6.06)

62.45
(21.43)

64.83
(43.65)

66.67
(44.62)

70.19
(45.18)

73.02
(49.79)

69.79
(44.08)

67.02
(0.04)

Source: MH Aug
Target: PD Reorient

61.89
(19.99)

69.10
(37.49)

63.35
(24.13)

67.49
(20.16)

57.00
(19.58)

62.80
(29.35)

66.23
(34.01)

68.09
(3.97)
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adaptation. Surprisingly, the most complex model in [19] benefited the least from 
domain adaptation.

An additional experiment was conducted to explore whether combining the 
MHEALTH and PAMAP2 augmented datasets into one large dataset for training, simi-
lar to our prior cross-testing experiment, would improve results when testing the model 
on the PD dataset with domain adaptation. We ran this test solely utilizing the Wan 
model [14] because it performed best without domain adaptation, as was observed in 
Table 4. This experiment yielded an accuracy of 64.17% and an F1 score of 21.00%. These 
results are surprisingly lower than those obtained without domain adaptation in Table 4 
and those using a single dataset as the source seen in Table 6.

In another experiment, we assessed the impact of the domain adaptation when pro-
gressively introducing PD patient data into the training set. We incrementally added two 
PD subject’s data to the healthy training data at a time, and evaluated the model perfor-
mance. This was specifically to evaluate whether the pretraining of models with healthy 
subject data (source domain) followed by the addition of PD data (target domain) would 
improve the model’s performance in recognizing PD-specific activities. The results from 
this experiment demonstrated that the accuracy of the models did improve as PD patient 
data were incrementally added to the training set, illustrating the benefits of domain 

Fig. 4 Average F1 scores for cross-testing PAMAP2 and MHEALTH to PD dataset with A different architectures 
and B different model complexities
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adaptation. However, the improvement in accuracy reached a plateau, indicating that 
there is a limit to how much the addition of target domain data can enhance the model’s 
performance. A more detailed analysis of this experiment is provided in Additional file 1 
under Section S2.

Discussion
This study addresses the challenge of developing accurate classification models for dis-
eased and less-represented populations in wearable data, which limits the application of 
health and home monitoring systems in clinical decision-making. To address this chal-
lenge, the study created a simple, shallow base model and implemented various regulari-
zation techniques to provide a more robust and effective model for activity recognition 
in PwPD. The study also compared the proposed model’s performance with existing 
CNN architectures from the literature to provide insights into the impact of model 
complexity on activity recognition performance. In addition, the study implemented 
the state-of-the-art domain adaptation technique, DANN, to explore its effectiveness 
in improving the activity classification capabilities of deep NN models. These contribu-
tions provide valuable insights for future research and contribute to advancing the field 
of human activity recognition.

First, across almost every architecture on the PAMAP2 and MHEALTH datasets, the 
average cross-validation accuracy increased when training on augmented data compared 
to the original data. This trend was especially prominent, with more complex models 
adding more layers to the architecture. The only architecture where this trend was not 
observed was the base model. This suggests that enhancing a dataset with data augmen-
tation justifies using a more complex model with a significantly increased dataset size. 
The data augmentation also helped alleviate the issue of subject variability in the activity 
recognition data. Single subjects were held out for testing across all architectures, leav-
ing the models vulnerable to the variability each person exhibits in how they perform 
common activities of daily living. A wide range of accuracy values was observed in the 
cross-validation folds before applying data augmentation, particularly in fold eight of the 
PAMAP2 dataset, where subject 8 was the only left-handed subject with sensors on the 
left-side body. In the original data experiments, fold eight consistently displayed lower 
accuracy when held out for testing. With data augmentation applied, each cross-valida-
tion fold had accuracy scores significantly closer in value, including the left-handed sub-
ject 8 of PAMAP2 tested against all right-handed sensor data. The low accuracy score 
with PAMAP2 subject 8 was only alleviated with data augmentation. The main reason is 
that some left-hand movements reflect the right-hand movements, which means moving 
in the opposite direction. The model trained on augmented data captured the activity’s 
patterns independent of the sensor placement on the left or right wrist.

For the healthy-to-PwPD test case scenario, there is a clear advantage to incorpo-
rating data augmentation in the source model. There was also a significant impact on 
model complexity regarding the binary F1 score for the updated three unique activity 
labels in the PD data. Table  4 clearly shows that by cross-testing from MHEALTH 
or PAMAP2 and applying the model to the PD dataset, the F1 score is higher when 
the model is less complex. This observation does not depend on the dataset used 
for training since it was observed for both MHEALTH and PAMAP2. Also, this is 
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simultaneously observed when using a training dataset of combined augmented 
MHEALTH and PAMAP2. Similarly, when domain adaptation is applied, DANN per-
forms better using models with moderate complexity (Table 6). These findings con-
firmed data augmentation and domain adaptation gained more benefit in the average 
F1 score from a healthy source to the diseased target population (Fig. 4).

Our exploration into combining augmented MHEALTH and PAMAP2 to form one 
large training dataset is an interesting point of discussion. It was observed that this 
larger training dataset allowed for simpler model architectures to perform better with 
higher accuracy and F1 scores in Table 4. The best result was utilizing the Wan model 
[14]. However, when domain adaptation was involved, our experiment with the Wan 
model [14] yielded unexpectedly worse results. In our future work, we plan to dive 
deeper into this exploration and investigate the reason for poor domain adaptation 
performance when trained on two datasets combined.

Comparing the results from the healthy-to-healthy tests to the healthy-to-
PwPD tests is also interesting to note. The domain adaptation methods seemed to 
improve model performance more in the healthy-to-PwPD case than healthy-to-
healthy. Binary F1 scores for the healthy-to-PwPD tend to be low because of the 
large domain shift between the healthy and diseased datasets. The highest average F1 
score was 49.79% when training on PAMAP2 and testing on PD with DANN applied. 
Another factor involved is the datasets. The MHEALTH dataset is much smaller 
than PAMAP2, and the PwPD dataset is much smaller than both MHEALTH and 
PAMAP2, especially with augmented training data. There is a large class imbalance 
when comparing the source to target datasets, which can lead to additional challenges 
in classification.

It is worth emphasizing that the lower performance observed during standing activi-
ties in Fig. 2 could be due to the involuntary movements PD patients commonly experi-
ence, known as dyskinesia. Dyskinesia can result in unpredictable, uncontrollable, and 
involuntary movements that cause difficulty in accurately classifying standing activities. 
These movements can make it challenging for individuals with PD to maintain a stable 
posture, leading to difficulties differentiating between standing and other activities. In 
addition, within the parameters of this study, it is difficult to say definitively if and how 
the age or gender of the populations compared would impact performance.

The only work close to ours in cross-testing from healthy to PwPD is the work of 
Albert et al. [4]. They used smartphone accelerometer data and achieved an accuracy 
of 63.5%, which is significantly lower than the accuracy of 73.02% that we achieved 
by adapting the PAMAP2 data to PwPD data using Kalouris et al. [7] (Table 6). Hys-
seini et al. [11] conducted a similar work by classifying activities and cross-testing but 
from adult to children activity dataset. They achieved higher binary F1 scores than 
our healthy-to-PwPD cross-testing cases, with 70% for standing, 63% for walking, and 
52% for sitting. This suggests a larger domain shift between healthy and diseased pop-
ulations, specifically PwPD, who experience a much greater shift in their movement 
patterns. The present study underscores the need for further research to develop 
accurate models to improve clinical decision-making in PD patients. Such models 
should be designed to account for the larger domain shift and other challenges associ-
ated with classifying activities in diseased populations.
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Regarding study limitations, it is acknowledged that the PD dataset used in this study 
is relatively small compared to some studies involving healthy subjects [1]. However, it 
should be noted that the dataset includes 14 subjects, which is comparable in size to 
other PD datasets used in previous studies [4–6]. Furthermore, the PD dataset was only 
used for testing and not for training—except for an additional experiment where it was 
combined with data from healthy subjects. Consequently, the size of the dataset did not 
impact the generalizability of the models from the healthy to the PwPD dataset. The PD 
data also did not have activity labels that matched those in the MHEALTH and PAMAP2 
datasets, which presents variability in the activities-matching process between datasets. 
However, activities were mapped to their closest analogs. It is also important to note that 
each scenario, based on its unique dataset, sensor placement, and instruction method, 
introduces nuances that may affect the outcomes. Our findings, though based on differ-
ent datasets and varying numbers of activities, aim to offer a comprehensive perspective. 
It underscores the importance of viewing our conclusions in the broader human activ-
ity recognition research context, emphasizing the continuous evolution and refining of 
methodologies in this field. While our study could not perform PD-to-PD cross-testing 
due to the absence of a suitable public dataset, this limitation highlights the importance 
of our work. There is a clear need for advanced algorithms in human activity recogni-
tion, especially for disease populations like Parkinson’s, which differ significantly from 
the general population. Our work points to the urgency and potential for future research 
in this vital area.

Despite these limitations, the contribution of this study lies in the pioneering explo-
ration of domain adaptation and data augmentation techniques for healthy-to-PwPD 
cross-testing in activity recognition. The findings of this study have the potential to 
inspire future research in this area and guide the development of more accurate and 
robust deep NN models for human activity recognition in PwPD.

Conclusions
This study explored the potential of deep NN models for activity recognition in PwPD 
using wearable sensor data. Several experiments were conducted using datasets from 
PAMAP2 and MHEALTH, focusing on the generalizability of the models from healthy, 
young populations to PwPD. The effects of data augmentation, manual axis reorien-
tation, model complexities, and domain adaptation were thoroughly examined. The 
results showed that the best activity recognition performance was achieved by a mod-
erately complex model trained on the augmented PAMAP2 dataset and adapted to the 
PD domain using the DANN domain adaptation method. The F1 score of this model 
was 49.79%, and the accuracy was 73.02%, significantly higher than the accuracy of 63% 
reported in previous studies.

Several key findings were produced from this study. First, it was discovered that more 
complex models did not always perform better when trained on healthy data and applied 
to the PwPD domain, despite data augmentation and domain adaptation techniques. 
Second, it was found that lower complexity models benefitted the most from data aug-
mentation on healthy models for the disease population domain. Last, domain adapta-
tion was shown to improve the generalizability of the models, with the most significant 
improvements observed for models with moderate complexity levels. These findings can 
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potentially contribute to developing accurate wearable-based activity monitoring solu-
tions for PwPD, improving clinical decision-making based on patient activity levels.

To improve the accuracy of activity recognition models for PwPD, future research 
should focus on including more relevant activities in the training data and incorporat-
ing PwPD data in the training process to improve model performance. Further research 
should be conducted to evaluate model performance when utilizing larger training data-
sets, which can be accomplished by combining datasets. For future work, we plan to 
investigate the reason for poor domain adaptation performance for some models, espe-
cially when trained on two datasets.

Methods
Datasets

The study utilized three datasets, namely two publicly available datasets—MHEALTH 
[20] and PAMAP2 [21]—along with a privately collected dataset of PwPD, referred to as 
PD data. The datasets contained wearable motion sensor readings on common activities 
of daily living. The collected readings were from two accelerometer sensors mounted on 
the wrist and ankle. Some of the main activities were standing, sitting, laying, and walk-
ing (refer to Fig. 6 for a full list of activities in each of the datasets). A summary of the 
characteristics and comparisons between these datasets is presented in Fig. 5.

• MHEALTH: The MHEALTH dataset consisted of 10 participants performing 12 
activities while wearing an IMU sensor on their right-side wrist, left-side ankle, and 
chest. Each activity had an average duration of 1 min per subject.

• PAMAP2: The PAMAP2 dataset consisted of 1 female and 8 male participants with 
an average age of 27 ± 3 years, who performed 18 activities with an IMU sensor on 

Fig. 5 The figure compares the datasets used in this study
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their dominant-side wrist and ankle and a chest IMU sensor. Each activity had an 
average duration of 2.8 min per subject.

• PD: The PD dataset used in this study was obtained from a previous research study 
[23, 24], and the authors of this paper were granted access to the data for analysis 
purposes. The patients gave informed consent, and the University of Rochester and 
Great Lakes Neurotechnologies institutional review boards approved the data col-
lection procedure. Fifteen PD subjects (6 F, 9  M) with an average age of 58 ± 10 
years participated in this study. The subjects had an average disease duration of 
10±4, a total mAIMS of 5 ± 4.4, an average 26-item PD dyskinesia Scale (PDYS-26) 
of 35 ± 21, and an equivalent daily dose of levodopa 1226 ± 535. The subjects per-
formed six activities while wearing an accelerometer on the wrist and ankle of their 
most affected side. These activities included walking, sitting on a chair, using a knife 
and fork to cut food while standing, putting on and taking off a coat while stand-
ing, drinking water from a cup while sitting, and unpacking groceries while standing. 
These activities were repeated four rounds during the patient’s medication ON and 
OFF times, providing a range of disease manifestations to assess the generalizability 
of deep NN models to PwPD. The subjects were asked to stop their PD medications 
the night before the experiment, so they performed the first round of experiments in 
their medication OFF time. After performing the first round, the subjects resumed 
their normal PD medications. A neurologist identified when the medication kicked 
in and then asked the subjects to perform the second round of the experiment. The 
other two rounds were 1  h apart. The 4-h procedure allowed for changes in PD 
symptoms to be captured during subjects’ medication ON and OFF times. The data 
duration ranged from 12 to 16 min for each subject, with an average time of 14 min.

Data preparation

During the data preparation phase, the publicly available datasets were standardized to 
align with the setup of the PD dataset.

Matching sensor placement To match the sensor placement across all three datasets, 
the following steps were taken:

Fig. 6 The activity labels across the MHEALTH, PAMAP2, and PD datasets, with matching activities indicated 
by the same color
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• The chest sensor data were removed from the MHEALTH and PAMAP2 datasets, 
leaving only the wrist and ankle sensor data, also in the PD dataset. The use of two 
sensors instead of one has many advantages, including higher performance, reduced 
uncertainty, and increased confidence [25, 26].

• The gyroscope and magnetometer data were removed from the MHEALTH and 
PAMAP2 datasets so that only accelerometer data were retained across all three 
datasets.

• Data labeled as ‘null class’ indicating transient or unspecified activities were removed 
from the MHEALTH and PAMAP2 datasets.

• The PAMAP2 dataset had some samples with missing or NaN values. These samples 
were removed from the edited dataset used for analysis.

Matching units between datasets To match the units between the datasets, the following 
steps were taken:

• The PAMAP2 (100 Hz) and PD (128 Hz) datasets were down-sampled to match the 
MHEALTH sampling frequency of 50 Hz.

• The acceleration unit in the PD dataset was converted to m/s2 , the same as the units 
used in the PAMAP2 and MHEALTH datasets.

Data segmentation The following steps were taken to ensure that the data were appro-
priately segmented for analysis:

• The data were segmented into windows of 150 timestamps, which correspond to 3 s 
with a 50 Hz sampling frequency.

• As recommended by [27], 5  s of data from the beginning and end of each labeled 
activity in the MHEALTH and PAMAP2 datasets were removed to eliminate any 
transient data from the recordings.

Matching activities To match the activities across the datasets, the following steps were 
taken:

• Seven common activities between PAMAP2 and MHEALTH, namely ‘Standing,’ ‘Sit-
ting,’ ‘Laying,’ ‘Walking,’ ‘Climbing Stairs,’ ‘Cycling,’ and ‘Running’ were analyzed.

• PAMAP2 subject nine was removed from the analysis as they did not perform the 
above activities.

• The PD activities were mapped to the closest analogs of those seven activities in 
MHEALTH and PAMAP2. In specific, Ambulation was mapped to Walking, Arms 
Resting to Sitting, Cutting to Sitting, Dressing to Standing, Drinking to Sitting and 
Unpacking Groceries to Sitting.

Data normalization Finally, all the data were normalized before segmentation by per-
forming the following steps:

• The mean and standard deviation of each column/axis in the training data were 
obtained.
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• The mean was subtracted from each value, and the result was divided by the 
standard deviation.

• The same normalization was applied to the testing data, with the mean and stand-
ard deviation calculated separately from the training data.

These steps ensured that the data were appropriately standardized before any further 
analysis. The original and updated activities in MHEALTH and PAMAP2 and the 
activity mapping in the PD data are depicted in Fig. 6. After matching activities across 
datasets, the MHEALTH dataset consisted of 2132 samples, each with 150 times-
tamps and 6 features for each timestamp. The PAMAP2 dataset consisted of 5,748 
samples, each with 150 timestamps and 6 features for each timestamp. For each data-
set, the 6 features were the raw 3D accelerometer readings from the wrist and ankle 
sensors instead of the resultant acceleration. Using the resultant acceleration leads to 
losing the angular acceleration, which is helpful in distinguishing between activities.

Data augmentation

Following the methodology proposed in [8], three data augmentation techniques were 
employed on the MHEALTH and PAMAP2 datasets. The code for these methods is 
publicly available from the authors of [8]. The augmentation techniques used in this 
study are briefly described as follows:

• “Rotation” arbitrarily rotates the axes of a window segment to simulate different 
sensor placements and orientations. The manual reorientation described next 
considered significant changes in the orientation, such as 180 degrees and sen-
sor placement, that changed the order of the axes between the datasets. However, 
sensor rotation as a data augmentation was limited to -90 to 90 degrees of change. 
This level of augmentation was chosen to prevent the model from overfitting and 
to make the training possible at the same time by not corrupting the activity pat-
terns.

• “Jitter” introduces Gaussian noise sampled with a standard deviation of 0.05 to 
mimic potential sensor noise.

• “Scaling” multiplies the data in a window by a random scalar sampled from a nor-
mal distribution with a standard deviation of 0.1 to mimic multiplicative noise.

The latter two methods are specifically designed to introduce variations in signal data 
commonly found in Parkinson’s data due to motor complications of the condition, 
such as tremors. For each window of data in the MHEALTH and PAMAP2 datasets, 
eight new data samples were generated. Each augmented sample had rotation, jitter, 
and scaling augmentations combined. It is important to note that this process can be 
computationally expensive.

After the data augmentation step, The MHEALTH dataset consisted of 19,188 sam-
ples, each with 150 timestamps and 6 features for each timestamp. After augmen-
tation, the PAMAP2 dataset consisted of 51,732 samples, each with 150 timestamps 
and 6 features for each timestamp.
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Manual reorientation

The orientation of each sensor was not explicitly reported in the dataset description. As 
a result, a manual reorientation process was employed in addition to data augmenta-
tion. This process involved visually analyzing the graphs of various activities to derive 
a mapping of one dataset’s axes to another. The standing, sitting, and walking activities 
were the focus since the ankle and wrist are usually in predictable positions for those 
activities, which allows for a more generalized mapping of the baseline orientation of the 
sensor axes.

The reorientation process involved multiplying all values in a column/axis by -1 if 
negated in the mapping and reordering the columns according to the new axes’ order. 
The target dataset was reoriented during cross-testing to match the source dataset the 
model originally trained on. It should be noted that this method may be error-prone, as 
the mapping can vary slightly depending on the analyzed subjects, windows, and activi-
ties. In addition, in the PAMAP2 and PD datasets, each patient’s sensors may be placed 
on different sides of the body, resulting in different mappings. Furthermore, if the sen-
sor shifts or moves during data collection, the baseline orientation can appear different 
across the data windows. Despite these challenges, this method significantly improved 
cross-testing performance when combined with data augmentation compared to data 
augmentation alone. Matching most of a source dataset’s sensor axes’ orientation to a 
target dataset’s orientation is preferable to matching none.

Upon reorientation to the MHEALTH dataset, the PD dataset contained 6,539 sam-
ples, comprising 150 timestamps and 6 features for each timestamp. After reorienting 
the PD dataset to the PAMAP2 dataset, the PD dataset consisted of a similar number of 
samples. Table 7 illustrates the number of samples per activity across the datasets before 
and after data augmentation of MHEALTH and PAMAP2. The PD dataset was not aug-
mented since it was a hold-out testing set.

Convolutional neural network (CNN) architectures

In the field of human activity recognition, overfitting is a prevalent issue in models 
trained on smaller datasets. A simple, shallow base model was designed to mitigate this 
problem, incorporating various regularization techniques to minimize overfitting within 

Table 7 The size of each dataset

It includes the number of samples for each activity for original and augmented datasets. For PD, MH R indicates the PD data 
reoriented to MHEALTH, and P2 R indicates PD reoriented to PAMAP2

MHEALTH PAMAP2 PD

Original Augmented Original Augmented

Standing 317 2853 909 8181 3042

Sitting 301 2709 979 8811 2843

Lying 301 2709 956 8604 x

Walking 302 2718 1132 10,188 654

Climbing Stairs 311 2799 535 4815 x

Cycling 301 2709 784 7056 x

Running 299 2691 453 4077 x

Total 2132 19,188 5748 51,732 6539
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and across domains. As shown in Fig. 7, the proposed architecture consists of a 1D con-
volutional layer with 16 kernels of width three and stride of one, followed by a 1D max 
pooling layer with width two and stride of one. An additional 1D Conv/1D Max pool 
block with 32 kernels is added, leading to global average pooling, a fully connected layer 
with 50% dropout, and final Softmax layers. The model was trained for 60 epochs with a 
batch size of 64, a learning rate of 0.001, Adam optimizer, categorical cross-entropy loss, 
and L1/L2 regularization with a value of 0.001 applied at every convolutional layer. The 
hidden layers utilized the ReLU activation function, whereas Softmax was used for the 
final output layer. The total number of parameters in the base model was 2103.

To assess the impact of model complexity on testing performance, several CNN archi-
tectures with varying complexity developed on the MHEALTH and/or PAMAP2 data-
sets were replicated as closely as possible following the descriptions from the literature 
[10, 13–19]. These models were implemented using Keras and trained on Florida Atlan-
tic University’s High-Performance Computing (HPC) Cluster for remote GPU access. 
For some replicated models, a flattening or pooling layer was not specified before the 
fully connected layers preceding the output of the CNN and the convolutional blocks. 
As a result, a single flattening layer was included in these models to ensure compatibility 
within the architectures. Adam optimizer, categorical cross-entropy loss, and ReLU acti-
vation function were used for papers that did not clarify the optimizer, loss function, or 
activation function type [10, 14–17, 19], to maintain consistency with the majority of the 
other papers and the proposed base model. To implement the work by Chen et al. [10], 
the approach by Jordao et al. [16] was followed, as the learning rate was not specified. A 
learning rate of 0.001 was used to allow the model to converge. In work by O’Halloran 
et al. [13], the filter sizes for the convolutional and max pooling layers were not specified. 
However, since this architecture had two convolutional and max pooling blocks, simi-
lar to the base model, the pooling and convolutional filters’ width and stride were kept 
similar to the proposed model. To prevent it from being too similar to the base model 
structure, 16 and 16 filters were used instead of 16 and 3. Figure 1 shows the complex-
ity of the implemented models in terms of the number of layers and parameters. The 
colors in Fig. 1A indicate the order of complexity, the same order of which is maintained 
throughout the tables.

Domain adversarial neural network (DANN)

The Domain Adversarial Neural Network (DANN) [9] was implemented in this study 
to investigate its potential to improve the deep NN models’ activity classification 
capabilities. DANN is a state-of-the-art adversarial domain adaptation technique 
commonly used in domain classification problems and HAR. The Awesome Domain 

Fig. 7 The figure depicts the architecture of the proposed base CNN model
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Adaptation Python Toolbox (ADAPT) package [28] was used for this portion. DANN 
is a feature-based domain adaptation technique commonly used in domain classifi-
cation problems and HAR by aligning the distributions of features across different 
domains through standard backpropagation training. The DANN architecture com-
prises a feature extractor, label predictor, and domain classification. During training, 
the label predictor predicts class labels, and simultaneously, the domain classifier dif-
ferentiates between the source and target domains. The goal is to learn features that 
are both discriminative and domain-invariant so that the model can classify input 
data into different classes, while the source and target data cannot be differentiated 
and thus will be treated similarly.

The DANN feature extractor was the final dense layer of each CNN architecture used 
in this study. The label predictor consists of a 50% dropout layer followed by a dense 
layer with Softmax activation, and the domain classifier consists of a dense layer with 
Elu activation followed by another dense layer with Sigmoid activation. The DANN was 
compiled with Adam optimizer with a learning rate 0.01 and Mean Squared Error loss 
function. The DANN was trained with a lambda value of 0.1 and a batch size of 32 for 
100–350 epochs, depending on when the model converged. The same optimizer used in 
the CNN architecture that makes up the feature extractor was used in this training stage.

Abbreviations
NN  Neural network
PwPD  Patients with Parkinson’s disease
PD  Parkinson’s disease
HAR  Human activity recognition
CNN  Convolutional neural network
DANN  Domain adversarial neural network
IMU  Inertial measurement unit
PDYS-26  PD dyskinesia scale
ADAPT  Awesome Domain Adaptation Python Toolbox
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Additional file 1. Figure S1. The learning curve illustrates the impact of incrementally adding healthy subject data 
to the training set on model accuracy when tested against PD data. The initial model was trained using augmented 
data from a combination of PAMAP2 and MHEALTH datasets. With each additional subject’s data incorporated 
(one from each dataset), there is a general trend of improved accuracy, albeit with notable variations. This pattern 
highlights the complex relationship between training data volume and model performance in the context of human 
activity recognition for PD. Figure S2. The curve presents the effects of systematically introducing PD subject data 
into the training process using the Domain Adaption Neural Network (DANN) approach, with the Kalouris model and 
PAMAP2 healthy dataset as the source. The figure displays the progression in model accuracy as more PD subjects 
are added, indicating the benefits of source domain pretraining. It also reflects a plateau, suggesting a point of 
diminishing returns in model performance improvements, which provides important insights into the optimization 
of transfer learning strategies for PD activity recognition.
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