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I. INTRODUCTION

A mass casualty incident (MCI) is a situation in which

casualties greatly outnumber available local resources, eventu-

ally overwhelming the local healthcare system within a short

time frame [1]. When responders arrive at the scene of an

MCI, one of their first tasks is to locate individuals and

assess their injuries promptly, known as triage. After triaging

victims, responders physically tag them with a color-coded

label indicating their injury severity before identifying other

victims. Fast and efficient victim tagging serves as a critical

initial step in the MCI process, providing vital information that

guides subsequent decisions. It enables the timely assessment

of the total number of victims, their distribution based on the

severity of injuries, and their respective locations throughout

the MCI environment.

Most of the current work done to improve the emergency

response to MCIs has a focus on improving resource alloca-

tion [2], responder coordination [3], [4], or transportation to

treatment facilities [5] with human-only responders. There is

a lack of research done in the on-scene or pre-hospitalization

stage of an MCI response, specifically the task of tagging

victims fast. This step is frequently assumed and overlooked

in existing work. Our work aims to address this gap by

designing and testing a novel multi-agent system (MAS) that

models the victim tagging stage during an MCI. This system

applies equally well to human or hybrid teams that include

autonomous systems. We create and test five responder-team

policies and compare them to determine the optimal strategy

for a team of medical responders to tag victims quickly in an

MCI. Our preliminary experiments simulate the scenario with

20 medical responders and 100 victims.

II. METHOD

We design a MAS where we model responders (human or

robotic) and victims as two types of agents. We model agent

behavior using finite-state machines. We consider discrete-time

t, which starts from t = 0 and advances one unit until all

victims are tagged by responders. At a time t, a victim v has

the following attributes: (1) v.x and v.y coordinates in the 2D

area A, (2) v.healthState the state behavior [0,1], (3) v.policy
victim policy, (4) v.isTagged whether v is tagged or not, i.e.

0 if v is not tagged and 1 otherwise, and (5) v.tagger the

responder who will tag them. For this study we assume that a

victim’s policy is idle and does not change over time (v.policy

= idle). Health status (v.healthState) can be defined using

varying criteria, and our mechanism works independently of

the criterion used. At a certain time t, a responder r has the

following attributes: (1) r.x and r.y coordinates in the 2D

area A, (2) r.state the state behavior, (3) r.policy responder

policy, (4) r.nextV ictim next victim to be tagged, and (5)

r.triageT ime is the time spent in the ‘triage’ state. The pos-

sible states of a responder are r.state ∈ {idle,move, triage}.

A responder ri starts in the idle state, then transitions to

the move state as ri moves towards ri.nextV ictim. When

ri reaches ri.nextV ictim, they transition to the triage state

and remains for ri.triageT ime steps. Then ri transitions to

the move state if another victim needs tagging, or the idle
state if all victims are tagged.

Responders select the next victim to be tagged until all

are tagged. Their victim selection is based on the responder-

team policy. In Random Victim (Policy 0), responders select

a random victim that has not been tagged yet and is not

currently chosen by a responder. In Nearest Victim (Policy 1),
responders choose an untagged victim that is nearest to them

and is not chosen by a responder. In Nearest Victim with
Rescheduling (Policy 2), responders do the same, with the

option to choose a victim that has been chosen by a different

responder. If this responder is closer to the victim, they choose

the victim, and the other responder will be rescheduled. In

Critical Victim (Policy 3), responders choose to tag the

nearest victim to them who is also critically injured. Once all

critically injured victims have been tagged, then responders

follow Policy 2. Critically injured is defined as having a

healthState < 0.5. In Grid Assignment (Policy 4), the

area is evenly split up into sections based on the number of

responders. Each responder tags victims nearest to them within

their specific assignment until all victims in their respective

sections are tagged.

III. EXPERIMENTAL EVALUATION

Our MAS is implemented in an agent-based modeling

framework where we run simulations to test and compare the

responder-team policies. Figure 1(a) illustrates the simulation

architecture. We use the Mesa open-source agent framework

[7] for the MAS design. The model has continuous space, runs

in discrete time steps, and utilizes a scheduler that activates

agents randomly at each time step. Our preliminary experi-

ments involve 20 responders and 100 victims in a rectangle-
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Fig. 1. (a) Architecture of the multi-agent simulation. (b) Simulation in progress for an MCI example. Responder agents enter the environment from (r.x, r.y)
= (0,0). v.healthState values correspond to the START triage algorithm [6] where triage tag categories are black, red, yellow, or green. (c) Simulation
results comparing policies for the amount of time steps it takes to tag 100 victims by 20 responders. Average results are reported along with averaged curves
across 50 iterations.

shaped environment. Fifty iterations of each experiment are

performed to gather average results.

The policies are evaluated by analyzing the number of time

steps it takes for the responders to tag all victims. Figure 1(b)

shows an example simulation, and 1(c) illustrates the results.

Figure 1(c) demonstrates that Random Victim (Policy 0) is

the least efficient, taking an average of 299 time steps to tag

all victims, while Nearest Victim with Rescheduling (Policy

2) performs best with an average of 153 time steps to tag

all victims. Visually it appears that Nearest Victim, Nearest

Victim with Rescheduling, and Grid Assignment Policies (1, 2,

and 4) have steeper curves, which indicates that these policies

are more effective in tagging victims quicker. Additionally,

the Policies 1 and 2 curves overlap from t = 0 until t = 75,

where 50 victims have been tagged. This indicates that, for

any number of victims up to 50, 20 responders tag a similar

number of victims each time step. Other sections of the curves

also overlap, such as Policies 1 and 4, at t = 112. This

suggests that some policies could be similarly effective at

specific time steps when there is a particular combination of

victims and responders. The efficiency of several policies are

relatively similar, which prompts the need for further analysis,

as well as individual policy analysis. Additionally, it would be

interesting to see whether these results stay consistent across

varying numbers of responders and victims, as MCIs can

involve a wide range of victim casualties.

IV. CONCLUSION

We developed an MAS of the victim-tagging process during

an MCI response and tested five responder-team policies in a

simulated environment with 100 victims and 20 responders to

determine which policy results in responders tagging victims

the fastest. The results indicate that Nearest Victim with

Rescheduling (Policy 2) outperforms the rest, highlighting

the importance of responder-team collaboration to employ

rescheduling when necessary. Further experimentation should

be done to explore each policy in depth and determine if the

results hold consistent across all potential MCI scenarios. This

would provide valuable insight for responder-teams to make

quick and accurate corresponding decisions during an MCI.

V. POSTER DESCRIPTION

The poster will contain a brief introduction and background

information, and explain the proposed method and novel

contributions. It will also illustrate the results and dive into

analyses, conclusions, and future work. Figure 1 indicates

poster contents well.
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