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Abstract— Mass casualty incidents (MCIs) are a growing
concern. Recent efforts to improve the MCI emergency medical
response focus on resource allocation, responder coordination,
or transportation efficiency, and often overlook the initial, yet
critical, step of tagging victims on scene. Tagging victims in
minimal time is vital in providing information that guides
subsequent time-constrained response actions. In this paper
we present a mathematical formulation of multi-agent victim
tagging to minimize the time it takes for responders to tag
all victims. Five distributed heuristics are formulated and
evaluated with simulation experiments. The heuristics consid-
ered are on-the go, practical solutions that represent varying
levels of situational uncertainty in the form of global or local
communication capabilities, showcasing practical constraints.
Extensive simulations demonstrate that local methods are more
efficient for adaptive victim tagging, specifically choosing the
nearest victim with the replanning option.

I. INTRODUCTION

A mass casualty incident (MCI) is defined as a situation in
which casualties greatly outnumber available local resources,
which eventually overwhelms the local healthcare system
within a time frame [1]. Some common types of MCIs
involve natural disasters such as wildfires, hurricanes, and
earthquakes or terrorist attacks such as mass shootings and
bombings. When emergency medical responders arrive at
the scene of an MCI, an initial task is to locate individuals
and assess their injuries promptly, known as triage, followed
by physically tagging them with a color-coded label corre-
sponding to injury severity. All victims are tagged before
assessing the next steps. Fast and efficient victim tagging is
a critical initial stage in the MCI response process, providing
vital information that guides subsequent decisions. It enables
the timely assessment of the total number of victims, their
distribution based on the severity of injuries, and their
respective locations throughout the MCI environment.

Most of the current work done to improve the emergency
response to MCIs has a focus on improving resource allo-
cation [2], responder coordination [3], [4], or transportation
to treatment facilities [5]. In [6], authors model the rescue,
treatment, and transportation of MCI victims to hospital
locations, testing communication modes between agents.
Tagging victims during the rescue process is overlooked and
assumed. Various works show there is a lack of research
done in the on-scene or pre-hospitalization stage, specifically
the task of tagging victims fast. To our knowledge, the
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problem of minimizing victim tagging time has not been
formally addressed. Therefore we leverage insights from
MCI response and from similar fields such as search and
rescue, to compare and evaluate efficient, practical heuristic
solutions. We aim to discover insights that can be valuable to
emergency departments and inform victim tagging practices.

In this paper we study the victim tagging problem for a
team of medical responders. We formalize victim tagging
as an integer linear programming problem and evaluate and
compare five distributed, on-the-go responder methods to
minimize the time it takes to tag all victims under varying
levels of uncertainty in communication. Our experimental re-
sults show that the Local Nearest Victim Policy outperforms
others, and local policies (under greater uncertainty) are more
efficient than global policies for adaptively choosing the next
victim to tag. Individual policy analyses give us additional
insights into the number of responders needed for various
victims and the efficiency of each policy, measured in the
time it takes to tag victims, allowing for the possibility of
improving MCI guidelines. The contributions of the paper
are summarized as follows:

1) We formulate MCI emergency medical response victim
tagging as an integer linear programming problem.

2) We design five distributed, on-the-go heuristic solu-
tions considering global and local agent communi-
cation and analyze their performance through simu-
lations. Results indicate that a local, nearest victim
tagging solution minimizes victim tagging time in
uncertain situations, as compared to four other practical
heuristics.

The rest of this paper is organized as follows. Section II in-
troduces the related work. Section III gives the problem def-
inition and the mathematical formulation of the constrained
multi-agent victim tagging problem. Section IV presents the
five heuristics. The experimental setup and results are given
in Section V, followed by the conclusion in Section VI.

II. RELATED WORK

A problem similar to victim tagging during an MCI is
search and rescue (SAR). Many studies evaluate SAR as a
task allocation problem, considering a team of unmanned
aerial vehicles (UAVs), heterogeneous vehicles [7], [8], [9],
or generally robotic teams [10]. SAR involves the search
and then the rescue phase that occurs once the positions
of the individuals are known [9]. The vehicle performing
the task may be allocated a particular known region to
explore. Often the solutions to these problems are solved
in an offline manner where tasks are allocated to agents
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before the start of the search phase [11], [8]. The victim
tagging problem is different because it requires practical
on-the-go/online approaches that assume uncertainty for the
responder team when they arrive on scene. While other work
proposing solutions for similar problems assume complex
robotic systems, our heuristics are intuitive and can be
implemented in the real world by human responder teams, as
well as generalized to heterogeneous or fully robotic teams.

In [9], authors propose a distributed task allocation method
that employs local centralization by implementing plan-
ners to lead different areas. The technique’s performance
is compared to market-based consensus-based bundle algo-
rithm (CBBA). Market, or more specifically auction-based
methods, such as CBBA and the dynamic auction approach
proposed in [10], consider one agent as the ”auctioneer”
while other agents bid on tasks to be allocated [12]. These
mechanisms will not work well in decentralized cases where
there is a lack of global communication between agents.
Additionally, one drawback is that once they produce a global
solution, they do not make any further effort to improve it.
Finding solutions adaptively for each independent agent can
be a way to mitigate this limitation. In [13] authors consider
a task discovery and allocation problem with limited con-
nectivity between robot agents. They consider a rendezvous
point for agents to meet and share information discovered,
which is helpful in communicating tasks, but can take away
from valuable time constraints.

In [14], authors propose an online, decentralized genetic
algorithm for multi-agent SAR. They introduce a handover
value for each agent, which agents communicate to one
another to decide who is allocated which task. This value
needs to be communicated globally between agents. In [8],
authors propose a centralized SAR task allocation algorithm
based on particle swarm optimization and show that it
outperforms some distributed solutions. For both [14] and
[8], challenges will be faced when there is a lack of global
communication. In our heuristics, we consider local and
global communication constraints to test realistic challenges
for the MCI responder team. Our methods are distributed,
allowing for increased uncertainty and on-the-go victim
tagging, making our solutions practical.

III. PROBLEM DESCRIPTION

We consider the victim tagging problem generally where
medical responders need to identify and tag victims, and the
aim is to minimize the total time it takes to tag all victims.
Medical responders are referred to as responders or responder
agents throughout the paper, and can be generalized to make
up human, heterogeneous, or fully robotic teams. In this
section we set up the preliminaries, and define the problem
mathematically.

A. Preliminaries

Let us consider a team of n responders R = {r1, . . . , rn}.
A responder ri is characterized by their speed (wi) and the
time it takes to triage a victim vk (τik). The responder agents
have a goal to tag all m victims V = {v1, . . . , vm}. We use

an m × m matrix D to represent the distances between pairs
of victims. Djk denotes the distance between victims vj and
vk. If vj and vk are the same victim, we assume the distance
is 0, i.e. Djk = 0. In this paper we assume all responders
start from the same position that we denote with index 0,
therefore D0k indicates the distance from the starting point
to vk.

B. Problem Formulation

The multi-agent victim tagging problem defined above is
a combinatorial optimization, which can be formulated and
solved using integer linear programming (ILP). The problem
is defined as minimizing a linear objective function (the
maximum time it takes to tag all victims) subject to linear
constraints.

We use TGijk to represent the time cost of ri moving
from vj to vk, represented as

TGijk =
Djk

wi
. (1)

The moving paths of each responder can be summa-
rized using a three dimensional matrix X = {xijk|i ∈
{1, . . . , n}, j ∈ {0, . . . ,m}, k ∈ {1, . . . ,m}}. Each element
xijk is a binary variable that represents whether responder
agent ri moves from vj to vk. The binary values can be
defined as

xijk =

{
1 if ri moves from vj to vk,

0 otherwise.
(2)

Note that j and k represent the victim index, except in the
case where j = 0, which indicates that ri is at the starting
location (k ̸= 0 since responder agents do not need to return
to their starting location).

Then the victim tagging problem can be formulated as the
following minmax ILP:

Obj = min

 max
1≤i≤n


m∑
j=0

m∑
k=1

(TGijk + τik)xijk


 , (3)

where Obj is the objective function describing the goal to
minimize the maximum time it takes for all responders to
tag victims. It is subject to the following constraints:

n∑
i=1

m∑
k=1

xi0k ≤ n (4)

Equation (4) specifies that at most n responders leave the
starting position.

n∑
i=1

m∑
j=0

xijk = 1, ∀k ∈ {1, . . . ,m} (5)

Equation (5) shows that exactly one responder tags each
victim vk.

n∑
i=1

m∑
k=1

xijk ≤ 1, ∀j ∈ {1, . . . ,m} (6)
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Equation (6) specifies that at most one responder leaves
each victim vj . When all victims are tagged, responders
remain at the last victim they tag.

m∑
j=0

m∑
k=1

xijk ≤ m, ∀i ∈ {1, . . . , n} (7)

Equation (7) illustrates that each responder ri tags at most
m victims.

m∑
j=0

xijk +

n∑
a=1
a̸=i

m∑
b=1

xakb ≤ 1, ∀i ∈ {1, . . . , n},∀k ∈ {1, . . . ,m}

(8)
Equation (8) ensures that if a responder ri tags victim vk,
then only ri can leave vk.

xijk ∈ {0, 1}, ∀i ∈ {1, . . . , n},∀j ∈ {0, . . . ,m}, (9)

∀k ∈ {1, . . . ,m}

Equation (9) describes that the path of ri from vj to vk is
either 0 or 1.

ui0 = 0 ∀i ∈ {1, . . . , n} (10)

1 ≤ uik ≤ m ∀i ∈ {1, . . . , n},∀k ∈ {1, . . . ,m} (11)

uij−uik+1 ≤ m(1−xijk), ∀i ∈ {1, . . . , n}, ∀j ∈ {0, . . . ,m},
(12)

∀k ∈ {1, . . . ,m}

uij ∈ {0, . . . ,m}, ∀i ∈ {1, . . . , n},∀j ∈ {0, . . . ,m}
(13)

Equations (10 - 13) ensure that the paths of the n re-
sponders do not contain cycles (i.e. they do not return to
a previously tagged victim). Here, we extend the Miller-
Tucker-Zemlin (MTZ) formulation for the Traveling Sales-
man Problem [15], [16] to n paths. Equation (13) specifies
that uij from the MTZ-based formulation accounts for all n
responders and m victims.

IV. APPROACH

Equations (3 - 13) describe the victim tagging problem
assuming optimal conditions, with centralized, global in-
formation available and optimal communication within the
responder team. It considers all possible victim tagging cases
for each responder, which is laborious and time-consuming.
The tagging problem for multiple responder agents is com-
binatorial in nature and NP-Hard [8]. The complexity of
the problem grows exponentially as the number of variables
increases, thus it is not suitable for real-time practical appli-
cations. Additionally, in a real MCI scenario, global infor-
mation and optimal communication are not always available.

Therefore, efficient heuristic solutions are presented in this
section with varying degrees of uncertainty.

We focus on the practical aspect of MCI victim tagging in
our solutions, and consider solutions (referred to as policies)
that are commonly used in emergency response or related
fields. Unlike other heuristics such as CBBA [7], [12],
particle swarm [8], and genetic algorithms [14], ours are
practical and intuitive approaches that are used in practice
for MCIs, or could easily be applied by responder teams in
chaotic, stochastic MCI scenarios on-the go, without having
extensive prior knowledge of the situation. While based on
previously existing methods, the five policies we explore, to
our knowledge, have not been formally defined and quantita-
tively compared in an effort to optimize victim tagging time.
The comparison and evaluation of these policies can serve as
a guideline and inform emergency departments about optimal
victim tagging practices.

Each policy we present acts as the overarching responder
team policy, which allows for responders to individually
and adaptively identify their next victim to tag. For the
following policy descriptions, we refer to the previously
defined term xijk, which describes whether responder agent
ri moves from a victim with index j to a victim with index
k. Initially all xijk = 0 and j = 0 for all responders. The
responder team’s policy will determine how an individual
responder locally and iteratively determines k, which then
becomes j when moving to the next victim to tag. The
selection of k for each responder agent happens on-the
go, individually for each responder in a distributed manner.
Therefore, when victim tagging has completed, a sequence
of k values determines the order of tagged victims for one
responder, and k = j +1 in the sequence of victims tagged.

To explain our heuristics, we introduce responder attribute
ai, which is initialized as Null, then becomes the victim
that ri has selected to tag next, and continues to update
as ri tags victims based on the policy. A victim vj is
characterized by the responder that is going to tag them
(fj) and whether they have been tagged yet (gj), where
gj ∈ {{0, 1}|0 = untagged, 1 = tagged}. The following
subsections formally present the five policies we analyze as
methods for a responder ri to identify the next victim to
tag (vk). For any definition of k, if k is undefined, then k
= j indicating the responder is idle. For all formalizations,
dist(a, b) refers to the distance between agents a and b.

A. Random Victim Policy (RVP)

In RVP, a responder ri chooses a random victim vl that has
not been tagged yet, and one who is not chosen by a different
responder to tag. Using previously defined responder and
victim attributes, the victim’s index can be mathematically
formulated as

k = {random vl ∈ V | ((vl /∈ ai,∀r ∈ R) ∧ gl = 0)}.
(14)

RVP represents the tagging method that assumes all global-
ized and centralized information, with minimal uncertainty,

167

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 13,2024 at 18:06:04 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Variables used to formalize our solutions.

Symbol Description

R Set of responder agents
n Number of responders
ri The ith responder
ai Selected victim for ri
τik Time it takes ri to triage vk
wi Speed of ri
ci Cell for ri
si State of ri
V Set of victim agents
m Number of victims
vj The jth victim
fj The responder that selected vj
gj Whether vj has been tagged
hj Health state of vj
pj Position of vj

and therefore acts as our reference scenario serving as our
benchmark. The four following policies build on this one and
allow for increasing uncertainty.

B. Nearest Victim Policy (NVP)

In NVP a responder ri chooses the nearest victim that
has not been tagged yet, and is not chosen by a different
responder as their target victim to tag. This is represented as

k = arg minvl∈V {dist(ri, vl) | ((vl /∈ ai,∀r ∈ R) ∧ gl = 0)}.
(15)

NVP is loosely based on a practical heuristic in [6]. This
policy continues to be applicable in situations that allow for
global communication and perception.

C. Local Nearest Victim Policy (LNVP)

LNVP describes the situation where responder ri locally
chooses the nearest victim as their next victim to tag. ri
can choose a victim that is chosen by a different responder,
in which case the other responder may need to replan their
next steps based on this on-the-go iterative process. This is
formulated below:

k = arg minvl∈V {dist(ri, vl) |(gl = 0 ∧ (fl = NULL

∨ (dist(vl, fl) > dist(ri, vl) ∧ dist(vl, fl) > ϵ)))},
(16)

where ϵ acts as a threshold and can be any value or function
indicating how far a victim’s current tagger has to be from the
victim so that they can reroute if needed. LNVP is similar
to NVP, except it is a heuristic that allows for increased
uncertainty. In LNVP, we assume responders do not have
the ability to communicate globally, only locally.

D. Local Critical Victim Policy (LCVP)

In LCVP we introduce a new victim attribute hj , which
indicates victim vj’s health status. This can be defined using
any criteria, but we represent it following the START (Simple
Triage and Rapid Treatment) algorithm, which is commonly
used in MCIs to correspond triage tags to health status [17].
For vj , if hj ∈ [0, 1], we can denote (1) Black (dead) when
hj ∈ [0, 0.25), (2) Red (immediate) when hj ∈ [0.25, 0.50),
(3) Yellow (delayed) when hj ∈ [0.50, 0.75), and (4) Green

(mobile) when hj ∈ [0.75, 1]. Health status is an internal
measure to the victim, so we make an assumption that if a
responder sees a victim, they can visually determine whether
the victim is critically injured (dead or almost dead) or less
injured (mobile or slightly injured). Thus, for LCVP we
define a critical victim as a victim with attribute h < 0.5.

For LCVP, a responder ri chooses to tag the nearest critical
victim, and then follows LNVP when all critical victims are
tagged. This is similar to [6] where they utilize memory
guided finding, except that in our case the responder agents
are not aware of the exact injury severities, and they have
not previously seen the MCI environment. This is formally
defined here:

k = arg minvl∈V {dist(ri, vl) | (gl = 0 ∧ hl < 0.5

∧ (fl = NULL ∨ (dist(vl, fl) > dist(ri, vl)
∧ dist(vl, fl) > ϵ)))},

(17)

if (¬∃vl|hl < 0.5) ∧ (∃vl|gl = 0), then use LNV P.
(18)

Here, ϵ acts the same as in LNVP. Equation (18) indicates
that after all critical victims are tagged, and there are still
victims that have not been tagged, then ri will follow LNVP
to find k. For LCVP we assume responders do not have the
ability to communicate globally, they must communicate ad
hoc locally.

E. Local Grid Assignment Policy (LGAP)

For LGAP, the MCI environment is divided into cells, so
that each responder is assigned to a cell in the grid. For
this policy, we introduce a set of cells C = {c1, . . . , cn}
describing cell areas for n responders, a responder attribute
c, and a victim attribute p. In LGAP a responder ri tags the
nearest victim within their cell ci until all victims in their cell
are tagged. A victim vj’s position in the MCI environment
is represented as pj . LGAP is formalized as follows:

k = arg minvl∈V {dist(ri, vl) |(pl ∈ ci ∧ gl = 0)}. (19)

We designed LGAP based on commonly used practical
SAR heuristics where different specified areas should be
explored [11]. For each aforementioned policy we assumed
that responders have a global view of the MCI environment
and the victims within it. LGAP allows for the most uncertain
conditions, where only local communication and limited per-
ception exist. We assume that the perception of a responder
agent is equal to or greater than their cell size. The variables
used to summarize our heuristics are summarized in Table I.

V. EXPERIMENTS AND RESULTS

This section presents the experimental setup and per-
formance evaluation of the five victim tagging policies to
demonstrate their effectiveness in comparison to one another.
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Dead Victims
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Fig. 1: Simulation frame from scenario with 5 responder
agents and 10 victims agents. The responders enter the scene
from the bottom left-hand corner and tag victims.

Move

Idle Triage

π1 : untagged victims remain π4 : has not reached victim

π2 : reached victim π5 : agent is rescheduled (local policy)

π3 : all victims tagged π6 : agent continues triaging

π1 

π4 ∨	(π5 ∧	π1) 

π1 

π2π5 ∧	π3

π3

π3
π6

Fig. 2: Responder agent finite state machine.

A. Simulation Setup

For our experiments, we designed a multi-agent system
(MAS) consisting of responder and victim agents in an MCI
environment, and created simulations utilizing agent-based
modeling to extensively test various responder policies. We
programmed the simulations in Python (v. 3.8.8) and used
the open-source agent framework Mesa [18] for the MAS
design. The MAS environment has continuous space, runs
in discrete time steps, and utilizes a scheduler that activates
agents in a random order at each time step. The simulation
iterates forward by one time step until all victims are tagged.

The MCI environment is staged as a 2-dimensional rectan-
gular space with area A, as shown in Fig. 1. The responder
agents tag victims following the responder policy until they
are all tagged. When victims are visited by a responder,
they are triaged and tagged as either black (dead), red
(immediate), yellow (delayed), or green (mobile) following
the START triage algorithm [17].

Victim positions are randomly, uniformly distributed
throughout the MCI environment, and we assume they are
idle. For the purpose of our experiments, we design a finite
state machine (FSM) to represent the responder agents’ state
and transitions between them, observed in Fig. 2. This lends
to an additional responder agent attribute si for responder

TABLE II: Simulation parameters, where t is time and values
are arbitrarily chosen.

Parameter Symbol Value

MCI Area A 100 x 60 units
Time to triage any victim τ 3 time steps
Victim health state h random value ∈ [0, 1]
Victim position p random value ∈ A
Responder speed w 1 unit/time
Responder start position pt=0 0
Responder start state st=0 idle

TABLE III: Number of responder (No. R) and victim (No.
V) agents for each experiment are shown. Results highlight
average time steps it takes to tag all victims for each
experiment, over fifty iterations. Bold values highlight the
most efficient policy for each experiment.

Experiment 1 2 3 4 5 6 7 8 9
No. R 5 5 5 5 20 20 80 80 320
No. V 10 20 100 1000 100 1000 100 1000 1000

Results (average time steps)
RVP 136 226 956 9,135 299 2,381 122 657 231
NVP 124 152 298 1,328 164 411 132 218 152

LNVP 118 145 288 1,316 153 420 111 190 118
LCVP 115 174 375 1,573 197 506 117 258 136
LGAP 126 161 317 1,383 177 470 148 238 146

ri’s state, where si ∈ {idle,move, triage}. All responder
agents begin in the idle state and then transition between the
move and triage states following transitions denoted with π.
When in the triage state, a responder ri is in the process
of tagging a victim vk, and is done after some number of
triage steps determined by τik. The responder attribute pi for
ri additionally describes their position at any given time. Our
simulation parameters are summarized in Table II, which can
be easily altered based on simulation goals.

B. Evaluation

We devise experiments with varying numbers of agents
to represent nine MCI scenarios of different scales to eval-
uate which policy optimally minimizes victim tagging time,
shown in Table III. The number of victims chosen are drawn
from one MCI incident plan [19], and we choose responder
numbers to be less than the number of victims. For each
of these nine experiments, we test each of the five policies,
for a total of forty-five experimental scenarios. For each of
these experiments, fifty iterations are run and we report the
average results. Each experiment is evaluated by using the
objective function in Equation (3) to find the minimal time
it takes to tag all victims.

Table III reports the average number of time steps it
took to tag all victims for each experiment, comparing
policies. Policies with global communication between re-
sponder agents (RVP and NVP) are distinguished from
the policies with local communication (LNVP, LCVP, and
LGAP). LNVP performed optimally, with the minimum
average time step values across almost all experiments, while
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Time Steps

RVP: 122 average steps
NVP: 132 average steps
LNVP: 111 average steps
LCVP: 117 average steps
LGAP: 148 average steps

(a) (b)

RVP: 299 average steps
NVP:  164 average steps
LNVP: 153 average steps
LCVP: 197 average steps
LGAP: 177 average steps

Fig. 3: Policy comparison for number of victims tagged
over each time step for 100 victims and (a) 20 or (b) 80
responders. Each color curve denotes a different policy, and
the dotted vertical line shows the average time it takes to tag
all victims for each policy.

RVP performed the least efficiently. Each policy’s average
time to tag all victims increases as the ratio between the
number of responder and victim agents grows. We notice
RVP’s values elevate increasingly compared to other policies.
For the tests with 5 responders (experiments 1-4), when the
number of victims increase, the values for RVP increase from
136, 226, 956, to 9,135 respectively, while values are smaller
for others. This is because of RVP’s nature; responders
choose to tag a random victim next, which could be the
furthest victim away, and this results in more time steps
when the number of victims increases. This emphasizes the
importance in selecting a quality policy for responders to
adaptively tag victims. We also note that although policies
LNVP, LCVP, and LGAP assume increasingly uncertain
conditions compared to RVP and NVP, they perform well.
This indicates that with uncertain conditions that arise from a
lack of global communication, local, iterative, and distributed
victim tagging for responders can provide efficient victim
tagging time.

Graphs (a) and (b) in Fig. 3 show a policy comparison
in how many victims are tagged over each time step for
100 victims, and 20 or 80 responders, respectively. It is
interesting to see that for both cases, each policy’s curve
is an S-curve, indicating a sigmoidal relationship between
the victims tagged and time. In Fig. 3(a) NVP, LNVP, and
LGAP have curves that are steeper, which suggests that these
policies are more effective in tagging victims quicker as
more victims are tagged per each time step. Additionally,
the NVP and LVP curves overlap from the start (t = 0) until
about t = 75, where about 50 victims have been tagged.
This indicates that, for any number of victims up to 50, 20
responders tag the same number of victims each time step
regardless of whether in a global or local communication
scenario. Similarly, other parts of the curves overlap, such
as the NVP and LGAP curves at around t = 112, suggesting
that policies have similar effectiveness at specific time steps
with a particular number of victim and responder agents.

In both graphs of Fig. 3, curves overlap, demonstrating that
if that particular number of victims and responders exists,
then some policies can be interchangeable, thus giving more

freedom in the choice of responder policy. In Fig. 3(b),
LGAP performs the least efficiently taking an average of 148
time steps until all victims are tagged. In LGAP, responders
only tag victims within their designated cell, thus some tag
more than others. This result highlights the inconsistency
of LGAP’s performance, as the locations of victims is very
influential. Fig. 3(b) shows that, in comparison to 3(a), all
policies’ curves are similar at this scale, indicating that with
80 responders, tagging victims is smoother and more efficient
than with 20 responders when there are 100 victims. This
also suggests that paying importance to policy selection is
most relevant when the ratio between victims and responders
is larger.

Fig. 4 presents results that give additional insights into
each policy. Row (I) shows total victims tagged over each
time step with 5, 20, and 80 responders shown for each
policy. All policies have similar curves with slight variations,
except RVP has drastic separation between each responder
amount, and it has a much larger range of time steps. Com-
paring the policies, LCVP’s curves have a greater disparity
at the start of the experiment, as well as a larger difference
between the case of 20 and 80 responders. This indicates
that LCVP could be less effective at the start of tagging 100
victims and there makes a bigger difference between the ratio
of responders to victims for this policy. Results also suggest
that if a responder team wants to implement LCVP as a
way to prioritize critical victims, then they should strongly
consider the number of responders to dispatch in an MCI
scenario involving 100 victims.

Row (II) in Fig. 4 shows the average time steps it takes to
tag 100 victims for 5, 20, and 80 responders for each policy.
NVP results look visually similar to those of LNVP, however
for the case with 20 responders the NVP curve increases
with a greater slope indicating an inability to tag victims as
quickly as LNVP. The ability for responders to communicate
locally proves to benefit their iterative process of identifying
the next victim to tag.

Row (III) in Fig. 4 shows the average time steps it takes
to tag 10, 20, and 100 victims for up to 5 responders,
for each policy. The graphs look very similar, indicating
the common trend of a decrease in time it takes to tag
victims when there are more responders. However, RVP is
a much larger scale with it taking over 4,000 time steps
to tag all victims when there is 1 responder. Graphs like
these can be used as a valuable tool to determine the number
of responders to dispatch, based on the number of victims
estimated in an MCI. For example, analyzing all policies
except for RVP, the curves all converge at similar values.
The curves for the cases with 10 and 20 victims look
very similar, and at around the point where there are 3
responders the lines converge. Therefore 3 responders could
be a sufficient amount to dispatch for the case where there
are either 10 or 20 victims across these policies. This is
especially relevant when resources are scarce and scheduling
and resource allocation come into play. Similarly, if there is
an existing deadline, such as 1,500 time steps, if there are
1-100 victims, it may be sufficient to dispatch 2-5 responders
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Fig. 4: (I) Number of victims tagged over time for 5, 20, and 80 responders. (II) Average time all victims are tagged for up
to 100 victims for 5, 20, and 80 responders. (III) Average time all victims are tagged for 10, 20, and 100 victims for up to
5 responders. Columns (a-e) illustrate different policies. (IV) Responder agents’ states over time. 4 responders are shown
for experiment 1 (5R, 10V). Parts (f-h) demonstrate different policies and the time when all victims are tagged (tall).

for any of the policies, excluding RVP, based on the graphs.
However, if there are more victims, or a tighter deadline to
accomplish, more responders would be needed to fulfill the
time requirement.

Row (IV) in Fig. 4 depicts a responder agent ri’s state
si for each time step in the case of 5 responders tagging
10 victims for NVP, LNVP, and LGAP (Fig. 2). The NVP
graph indicates that each responder was in si = triage for
2 steps, illustrating each responder tagged 2 victims. On the
other hand, the local policies, LNVP and LGAP, had varying
number of triage transitions, demonstrating the adaptation
that occurred between responders as they communicated
locally and identifies victims to tag. The adaptation resulted
in improved efficiency for tagging victims quickly as LNVP
and LGAP resulted in 118 and 126 time steps to tag all
victims, respectively. Results for LGAP further highlight the
inconsistency in efficiency due to the locations of victims.
Responder 1 and 4 remained in the idle state the entire time,
while responders 2 and 5 tagged all of the victims.

VI. DISCUSSION AND CONCLUSION

This paper aims to solve the multi-agent victim tagging
problem of minimizing the time it takes to tag all victims
during an MCI. We formalized the victim tagging problem
using ILP, and proposed five applicable, distributed, on-the-
go heuristics considering local and global communication

constraints. Our solutions were evaluated through a series of
simulation experiments. The results demonstrated that local
policies performed most efficiently for adaptively identifying
the next victim to tag for each responder, in an on-the-
go fashion. Specifically, LNVP consistently performed most
efficiently and RVP performed least efficiently.

Individual policy analyses provided further insights. For
policies assuming global communication, NVP performed
significantly better than RVP. The employment of local
adaptive tagging proved valuable for selecting the next victim
to tag. LCVP performed well but not the most efficiently.
If the goal was instead to prioritize critical victims with
a performance metric involving lives saved, LCVP should
be explored as a potential optimal policy. LGAP performed
poorly in comparison to the rest of the policies, as its
performance was dependent on the locations of victims. An
extension of LGAP where the responder cells consider victim
population locations could be an improvement to consider in
future work.

Future work could improve realistic global policies so that
the responder’s choice of a next victim is more efficient than
finding the nearest victim on-the-go. Also, further analysis on
local policies should be conducted to identify more optimal
policies. Instead of finding the next victim to tag in an
iterative and adaptive fashion, work could be done to find
methods that could be more efficient, and still practical.
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Our results could be utilized to create guidelines for
the victim tagging procedure. Currently, each emergency
department has individualized methods for responding to
MCIs, without a focus on victim tagging algorithms. If med-
ical responders have an estimate of the number of victims
involved in an MCI, they can compare our policy results
in choosing an optimal victim tagging method for their
situation, as well as deciding on the number of responders
needed to dispatch in order to tag victims within a time-
frame.
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