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Exploring Smartphone-based Spectrophotometry for Vitamin B12
Quantification
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University of Virginia
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Charlottesville, USA
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Abstract

Imbalanced nutrition is a global health issue with significant down-
stream effects. Existing nutrient assessment methods face several
limitations, with accessibility being a major concern. In this study,
we step towards developing technology for measuring nutrient
status in an accessible way. We prototyped a smartphone-based
spectrophotometer and tested its feasibility for measuring the ab-
sorbance spectra of vitamin B12 in a solution. We investigated
the effects of various light sources and reference spectra calcula-
tion methods on smartphone-based spectrophotometry. To further
validate our prototype, we compared the device to a benchtop labo-
ratory spectrophotometer. Leveraging the Beer-Lambert Law, our
prototype quantified the amount of vitamin B12 in a solution with
an accuracy of up to 91.3%. Our work provides initial evidence for
the utility of smartphone-based spectrophotometry as an accessible
method to identify and quantify nutrients, paving the way for future
developments aimed at other nutrients or in-body assessment.

CCS Concepts

« Human-centered computing — Ubiquitous and mobile com-
puting systems and tools; Smartphones; Laboratory experiments;
« Applied computing — Consumer health; Health informatics.
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1 Introduction

Imbalanced nutrition can impair growth and hinder the proper
functioning of the human body [10], underscoring the importance
of assessing nutritional status. However, nutrient assessment often
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requires invasive, expensive, and in-person clinic visits, making
awareness of nutritional status largely inaccessible [1]. Current
methods involve indirect, infrequent, in-person clinical examina-
tions and complex in-lab analyses on blood.

Developing accessible, affordable, and low-burden methods for
routine nutrient status assessment is essential for enabling timely
nutritional interventions. This study explores the use of spectro-
scopic techniques, which can accurately identify and quantify chem-
ical compounds, including nutrients. With the rapid advancement
of smartphone technology and their widespread global adoption,
smartphones offer a promising platform for ubiquitous nutritional
assessment. For example, smartphone cameras are capable of cap-
turing and analyzing spectral density and wavelengths of materials
and chemical solutions [3, 4, 15]. It remains unclear how well smart-
phones can capture the spectrophotometric signatures of nutrients
like vitamins and minerals. While our long-term goal is in vivo
nutritional assessment, this study takes a necessary first step by
evaluating whether nutrient profiles can be reliably detected in
simple liquid solutions. This foundation must be established before
advancing to more complex biological settings.

With the ultimate goal of measuring nutrient levels within the
body, this work sets the stage by investigating smartphone-based
spectrophotometry to quantify and identify nutrients in a solution.
We utilized low-cost, DIY (do-it-yourself) materials (e.g., smart-
phone, 3D-printed components) to prototype a spectrophotometer
for analyzing vitamin B12 solutions (selected due to its distinct
pink-red coloration and its critical role in supporting health and
well-being [9]). We also formalized an open-source signal analysis
pipeline using Image]J [12] and Python to extract absorbance spec-
tra from smartphone images over the visible range (400 to 700 nm).
Lastly, we compared and analyzed four distinct light sources and
three reference spectra calculation methods to assess the parameters
that most impact spectrophotometric analysis. The experimental re-
sults compared to a benchtop spectrophotometer demonstrate that
smartphone-based spectrophotometry holds potential as a method
for non-invasive micronutrient status assessment.

2 Background and Related Work

Spectrophotometry Overview. Spectrophotometry measures how
much light a substance absorbs or transmits, revealing its chem-
ical properties and enabling identification or quantification [6].
In visible spectrophotometry, used in this work, a light source
passes through a sample, and a photodetector captures the trans-
mitted light. Components such as a diffraction grating, light slit,
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Figure 1: The processing pipeline for generating absorbance
spectra of a sample from a smartphone-captured image. The
design schematic in top-center is reprinted from [3].

and sample holder help isolate and direct specific wavelengths.

The transmitted light intensity is used to calculate transmittance

Isample

as T = , and absorbance is derived as A = —log19(T)

Ire erence
[14]. Wher{ absorbance is linearly related to concentration, the
Beer-Lambert Law applies as follows: A = elc, where € is molar
absorptivity, [ is path length, and ¢ is concentration. This study
leverages visible spectrophotometry using smartphones for chemi-

cal analysis.

Smartphone-based Spectrophotometry. There is growing interest
in bringing spectrophotometry out of the lab and into everyday set-
tings using portable and accessible tools. Smartphones are increas-
ingly used in this space due to their built-in cameras, LED flash, and
processing power. A wide range of smartphone-based spectropho-
tometers have been developed for applications such as measuring
creatine [5], detecting glucose and cardiac markers [16], analyz-
ing water quality [13], and reading colorimetric assays for vitamin
C [17] and vitamin B12 [8]. However, most of these approaches
rely on specialized components or complex colorimetric reactions,
which reduce accessibility. Some studies have explored spectropho-
tometry using smartphones for educational purposes, proposing
simple, do it yourself designs made from low cost materials [2, 3, 7],
but these designs have not been validated against laboratory in-
struments or applied to nutrition. Our work addresses this gap by
developing a simple, accessible, and low cost smartphone-based
spectrophotometer for measuring vitamin B12, and we evaluate its
performance by comparing it directly to laboratory-grade equip-
ment. This demonstrates the potential for more inclusive, practical
tools to support nutritional assessment without relying on reagents
or specialized chips.

3 Prototype Development

We implemented a design by Bruininks et al. [3], which is com-
prised of a 3D-printed, periscope-like assembly (Fig. 1). Two razor
blades are used to create a narrow, straight slit for light to pass
through. Internally, the light from the slit bounces off a mirror and
into the diffraction grating, for which we used the polycarbonate
substrate of a DVD-R. The incident (reflected) light from the diffrac-
tion grating is directed into the smartphone camera sensor (Fig.
1). The housing is attached to a smartphone case so the camera is
reliably positioned in the center of the spectrometer’s opening.

- | -
reference o A

Output: Absorbance spectra of sample
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We developed a custom, 3D-printed cuvette holder that attached
directly to the main assembly to ensure precision, reproducibility,
and versatility (Fig. 1). The holder accommodated larger, more
intense light sources (e.g., an LED bulb) by allowing light to easily
pass through two relatively large, square openings on either side of
the cuvette. For this prototype to be viable as a mobile tool and to
facilitate experimentation at a greater scale, a streamlined process of
extracting quantitative information from the obtained smartphone
images was necessary. Thus, we implemented a semi-automatic,
Python-based signal analysis pipeline (Fig. 1) to analyze hundreds
of samples at scale and tune several parameters involved in the
signal analysis process. Given a horizontal image of the diffracted
light, a consistent ROI is selected. This is the integration region
over which the intensity profile is determined (a function of the
average y-axis gray value over the pixels in the x-axis, where the
gray value is a measure of intensity). The software Image] was used
to calculate this profile [12]. Using a calibration image of a CFL
bulb and a blank sample, we fit a linear equation to labeled pixel
positions of the known emission peaks of a CFL (436.6, 487.7, 546.5,
and 611.6 nm). The result is a linear equation that maps the x-axis
location of pixels in an image to wavelengths.

4 Experimental Evaluation

4.1 Experimental Setup

4.1.1  Nutrient Preparation. To ensure the robustness of our exper-
iments, we tested two common brands of vitamin B12 (cyanocobal-
amin) supplements: Walgreen’s (WG) and Nature’s Bounty (NB).
Multiple concentrations of vitamin B12 were prepared for each
brand as follows: 1. Supplements were dosed, ground, and dissolved
into distilled water at a concentration of 20 yg/mL, creating stock
solutions; 2. The stock solutions were filtered through a paper filter
to remove any insoluble material that remained from the supple-
ment; 3. The filtered stock solutions were diluted to four lower
concentrations (10, 4, 2, and 1 pg/mL).

4.1.2  Light Source. An ideal light source emits light radiation at a
uniformly strong intensity over the visible spectrum. Considering
device accessibility, we evaluated four consumer-available light
sources: a CFL bulb, an LED bulb, a single LED diode, and an LED
diode matrix. LEDs are well represented by this sample because of
their ability to generate light at a more even intensity.

4.1.3  Reference Spectra Calculation. Next, we experimented with
different ways of defining the reference spectra, Iy¢ ference- Since
a smartphone-based spectrophotometer is highly susceptible to
inter-trial variance, a reliable method of "zeroing out" the device
is needed. This can be achieved by taking multiple images of the
blank sample and combining information from each to inform the
reference spectra. Three different strategies were employed to de-
fine the reference spectra of the blank sample: 1) averaging the
intensity across each blank sample, Ipperage = {I} : % oIt
2) selecting the spectra with the sum largest intensity (maxcurve),
Imaxcurve = arg maxy, Zv’l I ; and 3) taking the maximum of the
three intensities at each wavelength, Iyax = {I) : max1Iy ;}.
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Figure 2: Intensity profiles across three reference spectra
calculation methods. (a) The CFL bulb shows strong overlap
among methods. (b) The LED matrix illustrates a worst-case
scenario, with differences in peak amplitude but not location.
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Figure 3: Prototype-derived reference spectra for each light
source.

4.2 Experimental Procedure

The same smartphone (iPhone XR) captured the images of the
diffracted light transmitted through the sample, and all samples
were analyzed in a quartz cuvette designed for UV-visible spec-
trophotometry. We took several steps to control for variance in-
duced by the smartphone’s imaging system. First, we chose to take
images in JPEG (instead of Apple’s HEIC). We also turned off "Live
Photos", "Prioritize Faster Shooting", and "Smart HDR". To account
for auto-focus and auto-exposure, we utilized a feature in the i0S
camera app that allows users to lock focus and exposure by press-
ing and holding the focus area. All four light sources and the three
strategies of reference spectra calculation were implemented and
compared. Three images of each sample were captured using the
prototype. Each image was taken immediately after the previous
one, and their intensity profiles were averaged. Additionally, three
images of the blank sample (distilled water) were captured under the
four different light source conditions. These images were combined
using the three different reference spectra calculation methods.

4.3 Evaluation Criteria

Qualitatively, ideal results would produce absorbance spectra with
relatively low noise, well-defined absorbance peaks or valleys, high
inter-trial reliability (low variance), and a clear ordering of concen-
trations. Quantitatively, the results should follow the Beer-Lambert
Law, which demonstrates that absorbance at a given wavelength
is directly associated with concentration (Sec. 2). Hence, a result
that adheres to Beer’s law will display a distinct ordering of con-
centrations at a peak, as absorbance is expected to show a linear
relationship with the sample concentration.
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5 Results

5.1 Effect of Different Light Sources

We found that the single LED and LED matrix light sources per-
formed poorly when comparing absorption spectra within the same
concentration, brand, and prototype conditions. These sources
showed high inter-trial variability in most cases. Any peaks or dips
that could be determined were of low quality, with concentrations
out of order and/or at similar absorbance values. The exception was
the LED matrix samples, likely because of the methodological deci-
sion to select the single clearest diffraction pattern as the ROI out
of the 2-3 visible from the matrix of LEDs. When evaluated on test
samples, the CFL and LED bulbs produced clear peaks and minimal
noise. The LED bulb showed more uniform emission spectra, with
fewer emission peaks and valleys, when evaluated on a blank (Fig.
3). The bulbs likely performed best because of the magnitude of
the light they emit, whereas the individual LEDs are weaker, with
a narrower degree of illumination. Therefore, an LED bulb is the
most ideal light source for our device out of those tested.

5.2 Effect of Reference Spectra Calculation

Reference spectra calculation methods were compared by plotting
their intensity spectra together and auditing the peaks, valleys,
and general shape (Fig. 2). In each case, the shape of the spectra
(peak and valley locations) are nearly identical for all methods (Fig.
2a). As expected, Iyqx resulted in the highest intensity and was
often made up of the Imgxcurve sample (Fig. 2b). The Igperage refer-
ence was generally lower in intensity. Because only the amplitude
(absorbance) was periodically affected, we found that no particu-
lar approach was distinct when comparing the various reference
spectra strategies.

5.3 Laboratory Spectrophotometer Benchmark

We evaluated the performance of the smartphone-based spectropho-
tometer device in identifying the spectral profile of vitamin B12
against a laboratory UV-visible spectrophotometer (Hach DR6000).
For this comparison, we selected the most optimal design for the
described smartphone-based spectrophotometer: LED bulb light
source and averaged reference calculation. The procedure was iden-
tical in all other aspects.

First, the laboratory device revealed no obvious differences be-
tween WG and NB. Each had a prominent peak at 361 nm, just
into the UV spectrum, and a flatter peak at 551 nm (see Fig. 4a for
WG, and c for NB). These results agree with previously published
data on the absorption spectra of cyanocobalamin [11]. Overall, the
inter-trial variance was negligible. Comparing this to results from
the smartphone device, we see that both supplements (WG and
NB) have identical peak locations (~577 nm) and similarly-shaped
absorbance spectra (Fig. 4b and d). However, there is also consider-
able variance in the peak absorbance of each sample concentration.
Noise is especially evident towards the boundaries of the visible
spectrum (<450 and >650 nm), where the prototype device is unable
to accurately measure transmittance (Fig. 4b and d).

Importantly, however, the peak at ~577 nm is only ~20 nm red-
shifted from the laboratory device results, demonstrating agree-
ment. Quantitative analysis confirms this for the WG samples, with
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regression analysis on the second generation smartphone device at
577 nm yielding an R? of 0.913 versus 1.0 for the laboratory device
(Fig. 5a). The results from the prototype for the NB samples are less
accurate, with an R? of 0.686 (versus 1.0 for the laboratory device;
Fig. 5b). This analysis indicates that spectrophotometric results
from our experiments follow Beer’s Law, with some degree of vari-
ance (sec. 2). If provided with a vitamin B12 sample of unknown
concentration, the prototype described herein can feasibly use the
absorbance measured at 577 nm to determine the true concentration
of the sample with an accuracy of 68.6% - 91.3%.

6 Discussion

We evaluated the feasibility of using smartphone-based spectroscopy
for measuring nutrients via a prototype. Experimentation found
that the device performed most reliably with a the LED bulb light
source, and that all tested reference spectra strategies were simi-
lar. Comparisons to a laboratory spectrophotometer demonstrate
comparable results, indicating the potential of smartphone-based
spectrophotometry for nutritional applications. While these initial
experiments with our prototype showed a performance compara-
ble to the lab-based spectrophotometer, they also revealed several
challenges, including more signal noise. Overall, the device offered
ease of use through its compact, portable design and a tailored
semi-automated pipeline for signal analysis.

This work takes several meaningful steps to inform future de-
velopments in accessible and non-invasive assessment of nutrient
status, but limitations should be addressed. The most pressing of
these is the high variance exhibited by the prototype relative to the
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laboratory device. This could be caused by outside light interfer-
ing with the analysis, a fixed and non-adjustable light slit design,
and/or flaws and artifacts in the diffraction grating or the smart-
phone camera. Associated with these issues, we also found that the
smartphone-based device had limited sensitivity at the edges of the
visible spectrum of light (e.g. Figure 4). We hypothesize that the
diffraction grating likely causes the reduction in the spectral range
of the prototype. If the intense red, green, and blue regions of the
LED bulb (Fig. 3) appear a few pixels astray from where they exist in
the reference image, then the sample data may produce erroneous
peaks and valleys. This issue may be resolved by enlarging the
diffraction grating, positioning it more directly in the light path,
or substituting it with a commercial grating, although this could
make the device less accessible.

Our experiments are also limited by using only one smartphone
model and relying on nutrient supplements, which may contain
additional compounds besides vitamin B12 itself. While the impact
of smartphone image post-processing on spectrophotometric data
is a legitimate concern, we believe our results in comparison to the
laboratory spectrophotometer illustrate the relative effectiveness
of our processing pipeline in mitigating this source of error. At
the same time, we recognize the importance of conducting further
research on how different smartphones perform in this context.

Future work should focus on improving device reliability, me-
thodically building up to realistic scenarios and samples, ensuring
that results hold across smartphone models, and expanding to as-
sess other micronutrients. We envision future iterations that can
detect vitamin B12 status through spectrophotometric blood analy-
sis via the epidermis or through less invasive biosamples, such as
saliva or urine, without the added cost and complexity of an assay.

7 Conclusion

In this work, we investigated smartphone-based spectrophotometry
for quantifying nutrients in aqueous solutions. We developed a pro-
totype and validated it against a laboratory spectrophotometer. We
also examined the impact of four light sources and three reference
spectra methods. Using the Beer-Lambert Law, our results show
that vitamin B12 can be quantified with 68.6% to 91.3% accuracy.
We highlight both the strengths and limitations of our design and
argue that smartphone-based spectrophotometry holds promise as
an accessible, noninvasive tool for nutrient assessment. By lever-
aging widely available mobile technologies, such tools could help
individuals better monitor and manage their nutritional health.
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