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Biobehavioral Rhythms in Everyday Life: Data and Models for
Capturing Cyclic Behavior in Naturalistic Settings
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The ability to continuously and passively monitor human behavior using data from mobile and wearable devices in everyday
environments presents new opportunities for tracking behavioral patterns that require detailed and long-term multimodal
data. This paper introduces a dataset and corresponding methods for capturing and analyzing cyclical patterns of varying
lengths from biobehavioral data collected passively through smartphones and wearable devices. The dataset includes up to 16
months of continuous records from smartphones and Fitbit devices, along with daily surveys from 166 university students. In
addition to evaluating existing methods for modeling cyclical behavior, we also develop and present a new approach that
facilitate multidimensional modeling and comparison of biobehavioral cycles within a population and across different time
periods. We evaluate our methods using collected data to identify differences in cyclical behavioral patterns among various
groups of students over different periods of the study.
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1 INTRODUCTION

Human rhythms consist of repeating patterns that are inherent to human physiology and behavior. First character-
ized in 1976, biobehavioral rhythms encompass physiological, behavioral, and neurological cycles that influence
daily life [52]. These rhythms can vary substantially across individuals and groups and fluctuate over time in
response to changing contexts. Yet, despite their foundational role in shaping human behavior, biobehavioral
rhythms remain understudied. A key barrier is the need for large-scale, fine-grained biobehavioral data to
identify and analyze these human rhythms effectively. Smartphone and wearable devices now enable continuous,
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longitudinal collection of naturalistic behavioral data in real-world settings, supporting investigations of how
rhythms differ across contexts and populations. However, most existing datasets lack the combination of study
duration, sensor sampling resolution, sample size, and multimodal integration needed for robust investigations of
cyclical patterns. As a result, methods for modeling and comparing these rhythms are limited.

Although techniques such as cosinor analysis can identify periodicity [63], it remains unclear how rhythmic
features vary across demographic groups, evolve over time, or relate to broader biobehavioral contexts. This gap
limits our ability to systematically characterize rhythmic regularity, divergence, and disruption. In this paper, we
take steps toward enabling such investigations by introducing new data resources and analytical approaches to
study the regularity and variability of human rhythms across multiple timescales.

We conducted a naturalistic longitudinal study, collecting continuous, high-frequency passive sensing data
and daily self-reports from 166 college students over a period of up to 16 months, spanning from September 2021
to January 2023. Participants lived their lives without intervention, allowing for the observation of naturally
occurring cyclical patterns in behavior. The dataset was specifically designed to enable the modeling and analysis
of cyclic behaviors, making it uniquely suited for studying human rhythms. Its large sample size, extended
duration, and rich multimodal sensor data, which include physiological and behavioral measures from Fitbits [1],
the smartphone-based AWARE application [25], and daily self-reported well-being, demographic, and personality
information, provide an unparalleled foundation for rhythm analysis. Data were recorded at a high frequency, up
to once per minute, providing a fine-grained temporal resolution. In addition, participants completed daily well-
being surveys, offering detailed, longitudinal insights into individual and population-level behavioral rhythms.
We provide the raw data and precomputed behavioral passive sensing and rhythm-related features to facilitate
accessibility and downstream analysis.

We also introduce three novel metrics to quantify multimodal cross-sectional variability in rhythmic patterns.
The Rhythm Variability Score (RVS) captures the rhythmic divergence across varying dimensions, within a
fixed evaluation context for each fixed parameter. The Aggregate Variability Score (AVS) then aggregates these
RVS values across evaluation contexts for each fixed parameter. Finally, these AVS values are averaged across
all parameters to yield the Mean Aggregate Variability Score (MAVS). We apply these metrics to the dataset,
highlighting clear variability in rhythms between graduate and undergraduate students, various energy level-
based groups, and between three key time windows during the fall semester. These findings highlight the value
of these metrics in capturing nuanced differences in biobehavioral rhythms and underscore their potential to
enhance our understanding of how human cyclic behavior varies across populations and temporal contexts.

The contributions of our work can be summarized as follows:

(1) We introduce a novel dataset designed to enable the extraction and modeling of cyclic patterns in human
behavioral rhythms. Its extended duration, high temporal resolution, and multimodal nature allow for the
observation of daily, weekly, and monthly cycles. Furthermore, the dataset enables the examination of
how the regularity and characteristics of these rhythmic patterns relate to various contexts and internal
psychological factors.

(2) We propose a novel approach for cross-sectional comparison of the extracted rhythms. We define three
metrics that enable the comparison of rhythms across groups and dimensions. These metrics aggregate
across rhythmic parameters and contexts to easily detect and analyze similarities and differences in rhythm
patterns.

(3) We apply our method to our dataset to reveal biobehavioral rhythm variances between participants over
time. From our analysis, we identify differences in rhythms between graduate and undergraduate students,
between varying reported energy levels covering cognitive, emotional, and physical energies, and over
three key weeks during the fall semester.
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This paper presents related work in Section 2, followed by an overview of the dataset in Section 3. Detailed
descriptions of the methods employed for cyclic pattern extraction and analysis are in Section 4. Resulting
analyses, findings, and implications are found in Section 5. We discuss limitations and future work in Section 6.
Finally, we conclude in Section 7 with reflections and final remarks.

2 BACKGROUND AND RELATED WORK

In this section, we first provide an overview of existing well-being-focused passive sensing applications and
datasets most comparable to ours, highlighting their limitations for rhythm analysis (Section 2.1). We then
summarize related work in modeling cyclic behaviors (Section 2.2).

2.1 Passive Sensing of Human Behavior

Passive sensing is a powerful tool for collecting naturalistic behavioral data without disrupting individuals’ daily
lives. Numerous studies have leveraged passive sensing streams such as smartphone activity, wearable sensor data,
and environmental signals to infer well-being-related insights [33]. In particular, passively sensed behaviors have
been connected to a myriad of health and wellness concerns. Several studies focus on mental health, highlighting
how different behaviors can indicate that an individual is at risk for, or potentially experiencing, depression
[23, 40, 61] and anxiety [26, 44, 51]. These passively sensed behaviors can also be applied to broader aspects
of wellness, such as modeling stress [11, 58]. Sensing has also been used to power interventions for healthier
behaviors, such as increased physical activity [13, 17, 36, 41] and healthier diets [46]. Despite investigating a
number of applications, few studies have investigated the prolonged biobehavioral cycles underlying momentary
behaviors.

In recent years, many datasets that leverage passive sensing have been made available to researchers. However,
none of these datasets are sufficient for a robust study into human rhythms. Many existing datasets collected
participants’ data only over short periods, such as days [32, 56] or weeks [6, 8, 9, 31, 45, 58], limiting their ability
to capture long-term cyclical patterns. While some datasets span longer periods, they have other limitations
that restrict the study of human rhythms. For example, the Sleep Data dataset [20] collected sleep data over a
period of eight years; however, it only includes unimodal data from a single participant and has not undergone
peer review. In contrast, popular long-term datasets such as GLOBEM [62] and the College Experience [42]
gather multimodal data over several years. Nonetheless, both studies rely on weekly self-reports rather than
daily reports, which limits their capacity to examine the effects of short-term rhythms. Additionally, GLOBEM
was not recorded continuously over the full four years; it only recorded participants’ behaviors for 10 weeks each
year, restricting researchers’ ability to extract longer, month-long rhythms from the data. Additionally, while
GLOBEM contains physiological data related to sleep, other important physiology readings, such as heart rate are
not included. Similarly, the College Experience dataset lacks physiological data, which further limits the types
of rhythms that can be analyzed. This dataset also provides sensor data at an infrequent sampling rate. While
conditional sensing, such as phone unlocks and calls, is recorded whenever the event occurs, other behaviors,
such as steps and activity recognition, are aggregated over larger periods, such as hours or days. With a less
fine-grained sampling rate, the College Experience dataset cannot be used to comprehensively analyze behavioral
rhythms, as shorter cycles cannot be detected. Our dataset aims to address these gaps by providing frequently
sampled, multimodal behavioral observations over several months. A comparative overview of our introduced
dataset alongside existing related datasets is provided in Appendix A.

2.2 Modeling Cyclic Behavior

Understanding human behavior can be enhanced by modeling cyclical patterns, with methods for conducting
these analyses still evolving. Early efforts employed statistical techniques, such as Cosinor analysis, to model
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Fig. 1. The composition of the Human Rhythms Dataset. Participants completed a comprehensive survey consisting of 22
personality and lifestyle questionnaires during onboarding and after completing the study. Throughout the duration of the
study, we collected data from provided Fitbits, the AWARE framework, and daily surveys.

biological and behavioral rhythms. This approach defines cycles using clear and interpretable rhythmic parameters
[18]. Many traditional methods assume that cycles follow strict sinusoidal patterns, which can cause difficulties
when trying to fit noisy or complex real-world signals. As a solution, more flexible approaches have emerged,
such as CyHMMs, which utilize a cyclic hidden Markov model to reveal underlying cyclic structures without the
need for a sinusoidal assumption [43]. Similarly, AutoNOM leverages changepoint detection to identify cycles,
which it then uses to form sinusoidal functions [27].

Several studies have employed these methods to examine physiological rhythms and their relationship to
participant wellbeing. Early research highlighted the impact of the circadian rhythm on sleep behavior [3],
cognition, and alertness [2, 4]. The following studies leveraged Cosinor analysis to extract rhythmic parameters
that describe the behavior and successfully linked these parameters to participants’ depression and loneliness
[63] and productivity [64]. These rhythmic patterns have also been utilized for more clinical applications, such
as gauging a patient’s readmission risk after pancreatic surgery [22]. Recently, large language models have
been trained to parse through sensor data and summarize participants’ daily routines [24, 67], offering promise
for studying cyclical behaviors. Despite the value of these studies, many possible connections between human
rhythms and participants’ lifestyles remain uninvestigated.

3 THE HUMAN RHYTHMS DATASET

The Human Rhythms dataset contains passively sensed behaviors and daily survey responses from 166 college
students at a mid-Atlantic American university collected over a 16-month period.

The median time that participants spent in our study was 224 days. Participants were compensated upwards of
$15 per week for their data. This study was approved by the Institutional Review Board at our university. Details
regarding data collection are provided in Figure 1 and in the following subsections. The released dataset includes
a cleaned version of the raw data, as well as behavioral and rhythmic features extracted from it.

3.1 Data Collection

To protect participant privacy, all data sources anonymized the data as it was collected. During onboarding, each
participant was provided with a three-character anonymous participant ID. Data from all sources was collected
and immediately stored under this ID, enabling us to track data across the sensors and surveys without revealing
the participant’s identity. The true identity of each participant was maintained in a separate secure CSV file for
compensation purposes. The research team began each onboarding session by explaining the nature of the study
and requiring participants to provide informed consent by signing a digital consent form.

10ur dataset can be openly downloaded at https://github.com/HAI-lab-UVA/Human-Rhythms-Dataset.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 241. Publication date: December 2025.


https://github.com/HAI-lab-UVA/Human-Rhythms-Dataset

Biobehavioral Rhythms in Everyday Life: Data and Models for Capturing Cyclic Behavior in Naturalistic Settings + 241:5

Table 1. Selected demographics from our 166 participants.

Category Count Percentage Category Count Percentage Category Count Percentage Category
Gender Disability Status Degree Pursuing Age
Female 109 65.66% | None 104 62.65% | Bachelor’s 124 74.70% 20.57 3.68
Male 54 32.53% | Anxiety 48 28.92% | Doctor of Philosophy 30 18.07% | Years in the United States
Non-Binary 3 1.81% | Depression 29 17.47% | Master’s 9 5.42% 846 7.19
Race ADHD 7 4.22% | Juris Doctorate 2 1.21% | Number of Roomates
White 97 57.43% | Visual Impairment 5 3.01% | Medical Doctorate 1 0.60% 330  3.20
Asian 57 34.34% | ADD 3 1.81% | International Student
Hispanic 56 33.73% | Other 6 3.61% | Yes 16 9.64%
Black or African American 17 10.24% No 150 90.36%
Other 9 5.42%

3.1.1 Onboarding and Exit Surveys. At the time of onboarding, participants filled out the demographics survey
which included questions about gender, age, race, degree pursued, school at our University, marital status, language
spoken at home, whether they were born in the United States or were citizens, living situation, employment status,
and whether they were an international student, veteran, athlete, involved in Greek life, and a first-generation
student. Finally, participants reported whether they had any diagnosed mental or physical disabilities. A summary
of several demographics is provided in Table 1. Participants also filled out 22 baseline questionnaires at the
beginning and the end of the study, providing information about personality and lifestyle. Each questionnaire is
listed and briefly described in Appendix B.

3.1.2  Passive Sensing. Each participant received a Fitbit Sense [1] and installed the AWARE mobile application
[25] to continuously record their behavioral and physiological data. The Fitbit tracked participants’ steps, heart
rate, activity level, and the number of floors climbed, with measurements taken every minute. We also collected
sleep data, recording the times participants slept and their sleep stages, measured in seconds. Through the AWARE
app, we collected information about participants’ phone locations, WiFi connections, and activity recognition,
sampling data from each sensor at intervals ranging from 30 seconds to 10 minutes?. Additionally, we collected
data on participants’ phone calls and screen time. These sensors are event-based, recording data only when
specific actions occur, such as making/receiving a call or locking/unlocking the device.

3.1.3 Daily Surveys. Each evening, participants were asked to complete a brief, 5-minute survey designed to
gather ground truth measurements of their emotional, social, physical, and cognitive energy and activities.
Participants used a 5-point Likert scale to rate their sleep quality and assess their cognitive, emotional, and
physical energy levels throughout the day (Table 2). Each of these were measured with a single Likert scale to
ensure the daily survey remained as short and unobtrusive as possible, ensuring participants remain willing to
complete the survey each day. They also reported how much time they spent on various activities such as work,
leisure, social interactions, and physical exercise. Finally, participants indicated how mentally and physically
demanding their day was and how rushed they felt while completing their activities.

3.1.4 Additional Information. Our dataset focuses on passively sensed behaviors and self-reports from each
participant. To help future research, our dataset also includes an “Additional Data" folder, which provides external
events that may influence participants’ behaviors. First, this folder contains a CSV file outlining all major events
that occurred at our university, and may have altered behaviors. These events range from snow days and final
exams to security events on campus. Similarly, we also provide a daily and hourly summary of the weather at
our university. This data was collected through the Open-Meteo API® [68], and contains a variety of weather

2To protect participant privacy, our dataset does not include raw data for AWARE’s WiFi, location, and application foreground sensors.

Instead, we provide derived features from which participants cannot be identified.
3Weather data is publicly available under a CC-BY license. Data can be accessed at open-meteo.com and https://zenodo.org/records/14582479.
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Table 2. The questions and responses to our daily survey. All response distributions are reported in the thousands.

Question Response Options Response Distribution

Sleep
What was the overall level of your sleep quality?
Energy Level

What was the overall level of your physical energy? 1) Low
2) Somewhat low
What was the overall level of your emotional energy?  3) Neither low nor high

o ) 4) Somewhat high
What was the overall level of your cognitive energy? 5) High

Daily Tasks

How mentally demanding were your tasks?
How physically demanding were your tasks?

How hurried or rushed was the pace of your tasks?

Activity Engagement Level

How much did you engage in professional activities? 1) None
2) Less than an hour
How much did you engage in social activities? 3) 1-2 hours
4) 2-4 hours
5) 4-8 hours
6) More than 8 hours

How much did you engage in physical activities?

How much did you engage in other leisure activities?

data, including temperature, precipitation, wind, and cloud cover. Finally, since our study was run during the
recovery phases of the COVID-19 pandemic, we also include the number of new COVID cases and deaths in our
city, each day of the study. This was retrieved from the COVID-19 Repository by the Center for Systems Science
and Engineering at Johns Hopkins University? [21].

3.2 Feature Extraction

We extracted features for downstream analysis. We first extracted traditional behavioral sensor features from each
Fitbit and AWARE sensor using RAPIDS [57]. For each day that participants reported raw data, we extracted
features to summarize the whole day, each hour of the day, each night (0:00 to 5:59), morning (6:00 to 11:59),
afternoon (12:00 to 17:59), and evening (18:00 - 24:59). We also extracted features for several larger time scales,
including each week, weekend, and sliding 3-day and 2-week window. A list of features and their descriptions
can be seen in Table 3. We also extracted rhythm parameters [63] from our data using CosinorPy [39]. Using
this function, we extracted the rhythm parameters displayed in Figure 2 and in Table 3. The methodology for
extracting these features is explained in sections 4.1.1 and 4.1.2.

3.3 Post-Hoc Analysis of Data Completeness

After all data was collected and cleaned, we performed an initial validation of our data by analyzing the compliance
from each data source. Participants were in the study for varying lengths of time, so we calculated the percentage

4COVID data publicly available under a CC-BY license. Data can be openly accessed at https://github.com/CSSEGISandData/COVID-19.
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Table 3. A summary of features we extracted and included in the dataset. Behavioral sensor features were extracted using
RAPIDS [57] for specific time periods. Due to limitations with iOS devices, some WiFi and applications features are only
available for participants with Android devices (n = 24). Rhythm parameters were extracted from the entirety of participants’
data using CosinorPy [39]. Our dataset also includes the raw data from most sensors, allowing future work to extract custom
features. Bl indicates a behavioral interpretation of the rhythm parameter.

Behavioral Sensor Features

Rhythm Parameters

Describe the range of heart rate values over
the time period. Includes features such as

Measures the duration of the oscillating function.

Heart Rate . . Period BI: Duration of a full behavioral cycle (e.g., a 24-hour
minimum, maximum, entropy, average, and
. . . sleep-wake cycle).
the number of minutes in various heart rate zones.
Explore participants’ steps throughout the provided The midline of the oscillating function. If sampling
Steps time period, extracting features such as the sum of Mesor rates are consistent, Mesor will equal the mean
P steps, timing of the first and last steps, and number of data points on the function.
of sedentary and active bouts. BI: Baseline or average level of behavior across the cycle.
. - . The difference between the mesor and the highest
Depict how well participants slept. Features include . . - .
. - Amplitude point along the oscillating function.
Sleep the amount of time participants spent asleep, and the . .
. . (Amp) BI: Strength of the rhythmic fluctuations (e.g., how much
time spent in each sleep stage. . . .
activity peaks differ from baseline).
The difference between the highest and lowest points
Describe the number of times the device scanned for along the function. In single component Cosinor
WiFi connections or nearby devices, and the number of Magnitude  functions, the magnitude will always be double the
devices it found. amplitude.
BI: Total range of behavioral variation within the cycle.
Monitor when participants lock and unlock their
phone. These features explore the amount of time The time at which the amplitude is reached, in
. . . - Acrophase . .
Screen and number of interaction sessions participants had (PHI) relation to the start of the function.
on their phone, both over the entire period and in BI: Time of behavioral cycle when peak behavior occurs.
each use session.
peﬁne participants moyement. T hese features The difference in time between when the highest and
. include the amount of time participants spent at . .
Location . Orthophase  lowest points along the function are reached.
home, total distance traveled, average movement R . .
. BI: Relative timing between the behavioral highs and lows.
speed, and location entropy.
The time at which the lowest point along the function
Calls Describe the number of phone calls participants Bathvphase is reached, in relation to the start of the function.
made and received, and their length. P BI: Time of day when behavior is at its lowest
(e.g., least activity).
Explore the change§ to the devices baFtery level The overall significance of how well the oscillatory
throughout the period. These features include the . )
. . function fits the provided data.
Battery amount of time the battery spent charging and P-Value . . -
. . . BI: Indicates whether the detected rhythm is statistically
discharging, and the average battery consumption L
significant.
rate.
A measure of the discrepancy between the observed
- Explain the time and number of sessions spent on Residual Sum data and the fitted model. A lower value indicates a
Applications different kinds of apps of Squares better model fit.
Pps- 4 BI: Smaller values mean the rhythm model fits behavioral
data better.
Standard Exror A measures the average distance between the observed
Activity Describe the time participants spent stationary, . data points and predictions by the fitted model.
I . . s . . . of Residuals o .
Recognition  walking, running, biking, and in a motorized vehicle. (SER) BI: Lower values indicate more stable and predictable
behavior.
The ratio between the rhythmic signal strength and
Signal to background noise, indicating rhythm clarity and

Noise Ratio

reliability.
BI: Higher values reflect stronger and more distinct
rhythms in behavior.

Margin of
Error

The uncertainty or confidence around the estimate
rhythm parameters, reflecting model stability.

BI: Lower margin of error = more reliable rhythm
estimates.
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Fig. 2. Rhythm parameters, displayed on the cyclical function. Figure adapted from [64] with permission.

Table 4. A summary of the number of days of data collected from each data source. While exact amounts vary between data
sources, we average over 200 days of sensor data and 150 days of survey data from participants.

Mean Standard Deviation Minimum Q1 Median Q3  Maximum

Fitbit  223.31 94.42 11 200.25 224 237.75 491
Aware  200.6 97.83 3 146 212 232 478
Survey 151.79 68.91 4 114 160 192 419

of days with valid data from each sensor, and report the results in aggregate. Despite variation between data
sources and participants, our participants were largely compliant with submitting data.

Most participants (56.63%) had between 200 and 250 days of sensor data. This distribution occurred because
most participants were onboarded at the start of the school year and chose to leave the study at its conclusion,
although this was not a requirement for anyone who was not graduating. Approximately a fifth (19.66%) of the
participants opted to remain in the study and submitted more than 250 days of data. The distribution of days of
data collected from each source is described in Table 4 and shown in Appendix C.

Fitbit Completeness. Missing Fitbit data may result from participants not wearing or syncing their devices.
Depending on the sensor, Fitbit addresses missing data by either providing dummy data (placeholder values) or
not supplying any data at all. We found valid data for approximately 87% of days for most sensors. However,
some sensors had significantly less data. Valid sleep data was recorded for only 82.55% of days, suggesting that
some participants likely did not wear their devices while sleeping. Similarly, the sensors measuring "fairly active"
minutes (70.81%) and "very active" minutes (68.73%) showed substantial missing data, likely because participants
needed to enter a specific heart rate zone for data to be recorded.

AWARE Completeness. Missing AWARE data indicates that participants either closed the app, ignored the
notification to reopen it, or turned off their phones. The data completeness rates for location (92.68%) and screen
status (93.70%) were higher than those for Fitbit. Meanwhile, WiFi and activity recognition both achieved a data
completeness rate of 86.41%, which is roughly equal to that of the Fitbit data. Notably, the calls sensor in AWARE
had the lowest completeness rate at 74.07%, as no data was recorded on days when participants did not make or
receive any calls.
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Table 5. Variables used to formalize our methods: single-period Cosinor model (left) and multidimensional rhythm variance
(right).

Symbol Description Symbol Description
y(t) Single-period Cosinor model RVS Rhythm Variability Score
t Observed time points AVS Aggregate Variability Score
P Rhythm period MAVS Mean Aggregate Variability Score
b1 Cosine coefficient R={r,..., rn}  Setof rhythm parameters, |R| = n
)i Sine coefficient S=1{s1,-..,sm} Setof sensor features, |S| = m
A Total amplitude F € {R S} Set of features the fixed feature f belongs to.
M Mesor feF Fixed feature of interest, f = r* if F = R, else
f=s
n(t) Error term Feomp Complementary set of F, Feomp = Sif F = R,
else Feomp = R
| Feomp | Cardinality of the complementary set
Zq € Feomp a-th feature in the complementary set.
D Set of varying dimension combinations
deD Specific pairwise combination from D
Cp Total number of combinations of d € D
E Set of evaluation contexts
ecE Specific evaluation context from E
(-)* Targeted or fixed variable (generic form)
P P-value
a Significance

Survey Completeness. All 166 participants completed the onboarding demographic survey; however, two
participants did not finish the pre-baseline survey. We found that 44 participants did not complete the post-
baseline survey, resulting in a compliance rate of 73.49%. On average, participants completed 72.55% of the daily
surveys they received.

4 METHODS

Our approach applies existing methods to detect significant rhythmicity and model these rhythms, then introduces
a novel technique for analyzing multidimensional variance in cyclic behavior. We describe rhythm detection
algorithms in Section 4.1, including periodicity detection (Section 4.1.1) and Cosinor-based modeling (Section
4.1.2), followed by our new approach for modeling and extracting insights from cyclic behaviors in Section 4.2.
Table 5 covers key formulation notations.

4.1 Existing Rhythm Detection Algorithms

Previous work has established techniques for detecting significant periods and applying cyclical models, such as
periodicity detection [63] and Cosinor cyclic behavior modeling [39].

4.1.1  Periodicity Detection. We use periodograms to detect the duration of significant periods, following the
approach outlined in Yan et al. [63]. Specifically, we apply Fourier-based periodogram analysis [49] to each
participant’s feature data across all sensors. This method transforms time-domain signals into the frequency
domain to detect statistically significant periods without requiring strong model assumptions. For each time
series, we compute the spectral power across frequencies, apply a multiple-comparisons corrected threshold to
identify significance, and extract peak periods corresponding to significant rhythms. This approach enables the
detection of all periods that exhibit statistically significant rhythmicity without imposing strong assumptions,
across different granularities such as minutes, hours, and days. Applied to the Human Rhythms dataset, it not
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only captures canonical rhythms such as the 24-hour, 12-hour, and 8-hour cycles reported in previous studies
[3, 63], but also allows for the exploration of additional periodicities, such as those associated with biorhythmic
patterns, that may be present in individuals’ data.

4.1.2  Cyclic Behavior Modeling. For each significant period, we model sensor rhythms using the Cosinor model,
a standard approach for known-period rhythms [18, 28]. Intuitively, the Cosinor model fits a sine-cosine wave
to the data, much like modeling daily or weekly cycles, making it straightforward to capture regular patterns
(Figure 2). The single-period Cosinor model [39] is expressed as the following:

y(t) = Py sin (%) + f32 cos (%) + M +n(t).

Here, t represents the observed time points in the time series, P is the known period of the rhythm, f;, f; are the
sine and cosine coefficients, respectively, M is the mesor, and 5(t) is the error term. The total amplitude of the

rhythm is based on the sine and cosine coefficients A = /% + fi2. By fitting this sinusoidal curve to the data,

we estimate rhythm parameters such as total amplitude, acrophase, mesor, and related measures (see Table 3 for
definitions and behavioral implications).

4.2 Analyzing Multidimensional Variance in Cyclic Behavior

To enable multimodal cross-sectional and cross-group assessments of rhythm variability, we developed an ap-
proach consisting of the Rhythm Variability Score (RVS) and an aggregation that consists of the Aggregate
Variability Score (AVS) and the Mean Aggregate Variability Score (MAVS). These metrics capture and aggregate
variability across contextual dimensions, evaluation contexts, and rhythmic parameters to provide a comprehen-
sive view of rhythm divergence. The Rhythm Variability Score (RVS) quantifies the degree of rhythmic divergence
by measuring the proportion of rhythm parameters that exhibit statistically significant differences across varying
dimensions, within a fixed evaluation context for each fixed parameter. The Aggregate Variability Score (AVS) then
aggregates these RVS values across evaluation contexts for each fixed parameter to provide a broader assessment
of rhythmic dissimilarity. Finally, these AVS scores are averaged across all parameters to yield the Mean AVS
(MAVS). This approach enables analysis of the stability and variability of cyclic behavior by first quantifying how
rhythmic patterns differ across varying dimensions (e.g., time windows or groups) within a fixed context, and
then aggregating these results across all such contexts to assess global rhythmic divergence.

4.2.1 Rhythm Variability Score. Let R = {ry,rs,...,r,} denote the set of n rhythm parameters, and let S =
{51,582, ..., Sm} denote the set of m sensor features. Our objective is to quantify rhythm variability across rhythm
parameters (e.g., mesor) and sensor features (e.g., mean number of steps), and to evaluate how these rhythmic
patterns vary across multiple dimensions (e.g., demographic groups). To achieve this, we compute the Rhythm
Variability Score (RVS) for a fixed feature of interest f, where f € R (rhythm-centric view) or f € S (sensor-centric
view), by comparing it against every element in the complementary set Feomp. The set Feomp represents sensor
features if the feature of interest is a rhythm parameter, or the set of rhythm parameters if the feature of interest
is a sensor feature. This comparison is done across a set of varying comparison contexts D (e.g., groups), where
each d € D represents a specific pairwise combination. This is further performed within a fixed evaluation
context e* € E (e.g., one week). Both D and E are contextual dimensions derived from the data, drawn from
the same underlying distribution of contextual factors (e.g., demographic groups or time windows), but they
represent distinct axes of comparison and evaluation within a given computation. For example, if D denotes
varying demographic groups across which rhythmic differences are assessed, then E may represent time windows,
with the evaluation fixed within a specific time window e*; conversely, if D varies across time windows, then E
may represent demographic groups, with e* denoting a fixed group context.
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To identify statistically significant differences between contextual levels (e.g., demographic groups) d, we
perform a one-way ANOVA for each combination of rhythm parameters and sensor features. This test will
identify whether any sensor feature or rhythm parameters differ between the conditions. We use the standard
indicator function 1{p < a} (equal to 1if p < «, 0 otherwise) to count significant results. The RVS is then defined
as follows:

|Fcomp|
ey _ 1 1 (e) () 1ep(€)
RVSf —ﬁ Z C_Zl{pfzad SO(} 1_prlad 1{szad S(X} > (1)
compl =1 \™P gep deD

b
= ), (|D|)
ZSbS|D|

where

- f € {s",r*} is the fixed feature of interest, representing either a target sensor feature or a rhythm parameter
(f e P,

- Feomp is the complementary set to F, representing all sensor features if f is a rhythm parameter or all
rhythm parameters if f is a sensor feature,

- 2z, is the a-th element in the complementary set (z, € Feomp),

- D is the set of varying dimensions or contexts (e.g., group combinations),

- d € D is a specific pairwise comparison between contextual levels drawn from D,

- Cp is the total number of valid combinations of elements from D,

- " € E is a fixed evaluation context (e.g., one week), and

- pj(f;) 4 1s the p-value associated with the fixed feature f, complementary feature z,, and varying dimension
d, computed within the fixed evaluation context e*.

Equation 1 defines a template form of the RVS, which captures rhythmic divergence for a fixed feature f across a
set of varying dimensions D, within a fixed evaluation context e* € E. This formulation aggregates the proportion
and strength of statistically significant differences based on p-values and indicator functions. A higher RVS value
indicates greater rhythmic divergence across the varying dimension D, as the score increases with both the
number of statistically significant differences (captured by the indicator function) and the magnitude of those
differences (reflected by the corresponding p-values). Accordingly, RVS quantifies whether rhythmic patterns
differ across conditions and the degree to which they diverge. We can further instantiate this general formulation
for two specific cases: 1) the sensor-centric case, where f = s* € S and we aggregate over rhythm parameters R,
and 2) the rhythm-centric case, where f = r* € R and we aggregate over sensor features S. These are derived in
Appendix D.

4.2.2 Aggregating and Averaging Variability Scores. To evaluate overall rhythmic divergence across multiple
evaluation contexts, we aggregate the RVS computed for each evaluation context e € E. This aggregation yields
the Aggregate Variability Score (AVS) for a fixed feature f. For example, if we are comparing a rhythm’s mesor
between weeks, then AVS would be calculated by aggregating each week’s mesor RVS. Individual AVSs scores
can then be averaged across all fixed features f € F, where F denotes either the set of rhythm parameters R or
sensor features S, to compute the Mean Aggregate Variability Score (MAVS). The calculation for AVS and MAVS
are derived below, with a directional arrow indicating the transition from AVS to MAVS:

1 (D,e) 1
AVSf = — RVS ™ = MAVSr = — AVS 2
4 |E|; 7 " |F|f; f @
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Equation 2 captures how consistently a specific rhythm parameter or sensor feature exhibits divergence across
a set of comparison dimensions D under various evaluation conditions. The MAVS then averages these AVS values
across the entire set of rhythm parameters R or sensor features S. This yields an overall rhythm variance score that
reflects global rhythmic divergence at the population level, accounting for variability across all features and all
evaluation contexts. Higher MAVS values indicate greater rhythm variability across groups or time, depending on
the comparison. Since MAVS is derived from p-values, it reflects the extent of statistically significant differences.
While its magnitude may vary with the number of features, MAVS is primarily used for relative comparisons
across groups or time windows. We can further instantiate the general formulations of AVS and MAVS for both
rhythm-centric and sensor-centric cases, detailed in Appendix D.

5 ANALYSIS

We summarize our analysis results in this section. Utilizing the Human Rhythms dataset, we first explore
periodicity detection in Section 5.1, the impact of external events on rhythms in Section 5.2, followed by analysis
of multimodal variance in cyclic behavior in Section 5.3. In Section 5.4 we dive deeper into analyzing differences
between groups across time, and in Section 5.5 we investigate rhythm variability between time windows across
group contexts. Finally, in Section 5.6, we validate our approach with an existing dataset.

5.1 Periodicity Detection

We extract the length of significant periods contained within the participants’ behavior using Fourier-based
periodogram analysis. We specifically recorded the percentage of participants whose data exhibited a significant
cycle of that approximate length (rounded to the nearest hour) for selected behaviors. Figure 3 illustrates the
number of participants who had statistically significant periods of various lengths. The high-resolution data
enables the detection of short periods, of a single hour or shorter, to be extracted. Moreover, continuous long-term
data collection leads to the presence of long-term rhythms that span several hundred days. Although these longer
periods are present within the data, they tend to be specific to individual participants.

Analyzing periods that are identified within several participants’ data provides insight into human behavior. As
shown in Figure 3A, many behaviors frequently demonstrate 12- and 24-hour periods, as would be expected from
daily behaviors. Interestingly, participants’ step rhythms also appear to follow 8-hour periods, potentially aligning
with participants’ inactivity while sleeping each night. Other behaviors frequently follow hourly periods, which
are more behavior-specific. In particular, battery consumption rate tends to follow periods of approximately 18
hours, potentially showing how participants charge their phones overnight. Similarly, participants’ time sleeping
tends to abide by 10-hour periods, slightly longer than the recommended 8 hours of sleep nightly, but still within
the expected range for college students.

The daily periods (Figure 3B) also provide insight into the behavior of the participants. 24-hour behaviors
are most common for all behaviors, capturing participants’ daily routines. Longer periods for some behaviors,
namely sleep and phone usage, are less common, emphasizing that these behaviors are mostly influenced by daily
routine. 7-day periods are also relatively common among participants, demonstrating a clear weekly behavior,
such as walking to class at the same time each day. Other behaviors, such as median heart rate, have many days
with significant periods. Although 1, 2, 4 and 7 days are the most common, many participants have significant
periods of different lengths, potentially indicating the presence of unstudied rhythms. Studying these periods
for each participant may help enable context-aware interventions, personalized recommendations, and early
detection of rhythm disruptions.
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Fig. 3. The number of participants with a significant period, for all periods of a small subset of behavioral features demon-
strated by at least 25% of participants, truncated to the corresponding hour (A) or day (B). The period lengths provide insight
into participants’ cyclical behavior.

5.2 Measuring the Impact of External Events

For further rhythm analysis, we investigate the impact of external events on rhythmic patterns. We segmented
the data into three academic-calendar periods (fall semester, winter break, and spring semester) to capture
distinct external contexts likely to influence participants’ rhythms. Rhythm parameters from the Cosinor model
were computed for each time range and sensor feature using a 24-hour period. Paired t-tests across participants
identified significant changes in rhythm parameters between periods, revealing rhythm alterations and the
proportion of features affected by external events.

Table 6 highlights significant rhythm shifts across academic periods, with the largest percent changes observed
between the fall semester and winter break and again between winter and spring. Opposite signs of change
across these transitions suggest that rhythms are likely relatively stable during semesters but disrupted during
winter break. For example, mesor (baseline levels) increased for activity and location features during winter,
while amplitude rose for location and battery features, reflecting reduced mobility and altered routines when
students return home. These patterns reversed in spring, indicating re-stabilization of rhythms. Changes in the
Standard Error of Residuals (SER) further show that battery usage, heart rate, WiFi, and step rhythms became
more regular during winter, while location and mobility features grew more irregular. These findings demonstrate
that external events can substantially alter daily rhythms and highlight behavioral signatures of disruption and
recovery. For the ubiquitous computing community, such insights enable context-aware applications, such as
adaptive health interventions, automated routine monitoring, and anomaly detection systems that account for
external events (e.g., holidays or moves) when interpreting behavioral data.

5.3 Multimodal Variance in Cyclic Behavior
We examine the variance in cyclic behavior across multiple modalities and evaluation contexts using the variability

metrics we define in Section 4.2. Specifically, we assess how rhythmic patterns vary across both group and temporal
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Table 6. Rhythm variance in response to external events across different time periods. The parameter SER stands for standard
error residual. The "Fall vs. Winter" and "Winter vs. Spring" columns show the average percentage change in each rhythm
parameter across all participants for the specified sensor. Positive values indicate increases, while negative values indicate
decreases. The percentages in parentheses represent the average absolute magnitude of these changes, regardless of direction.
The % Feature shows the percentage of features that have a significant p-value for the paired t-test.

Parameter  Behavioral Features  Fall vs Winter % Feature (p < 0.05) Winter vs Spring
Mesor Activity Recognition 6.85% (13.04%) 83.3 -5.16% (12.38%) 83.3
Battery -10.97% (16.60%) 0.0 1.42% (11.36%) 16.7
Heart Rate -2.49% (2.49%) 100.0 2.32% (2.32%) 100.0
Locations 50.47% (64.83%) 90.0 -9.95% (50.86%) 85.0
Step -12.50% (26.25%)  89.7 -34.94% (61.26%)  72.4
Wifi Connections -10.36% (10.36%)  50.0 6.42% (11.09%) 50.0
Wifi Visible -47.54% (47.54%)  50.0 43.96% (43.96%)  50.0
Amplitude Activity Recognition -16.70% (21.53%)  50.0 -10.65% (34.33%)  83.3
Battery 114.90% (114.90%) 16.7 -72.03% (72.03%) 0.0
Heart Rate -17.14% (17.14%)  50.0 9.13% (18.75%) 40.0
Locations 16.17% (36.90%)  20.0 -27.56% (53.22%)  80.0
Step -26.46% (38.48%) 86.2 59.37% (66.45%) 72.4
Wifi Connections -40.49% (40.49%)  50.0 82.11% (82.11%)  50.0
Wifi Visible -39.18% (39.18%) 0.0 65.41% (65.41%) 0.0
Acrophase Activity Recognition 6.29% (11.28%) 33.3 -5.45% (13.20%) 33.3
Battery 6.76% (14.82%) 0.0 14.83% (22.86%)  16.7
Heart Rate -2.54% (3.91%) 0.0 -3.76% (9.94%) 0.0
Locations 1.17% (6.55%) 10.0 -0.01% (8.85%) 20.0
Step 8.82% (15.85%) 55.2 -8.03% (16.90%)  65.5
Wifi Connections -1.44% (2.79%) 0.0 -3.28% (5.35%) 0.0
Wifi Visible -22.16% (22.16%) 0.0 -8.93% (8.93%) 50.0
SER Activity Recognition 4.85% (9.16%) 66.7 -4.48% (10.53%) 83.3
Battery -16.20% (16.48%) 0.0 5.90% (5.90%) 333
Heart Rate -3.71% (6.26%) 90.0 7.44% (7.44%) 90.0
Locations 31.78% (36.23%)  90.0 -15.66% (23.00%)  75.0
Step -9.83% (17.59%)  75.9 17.62% (29.68%)  82.8
Wifi Connections -21.75% (21.75%)  50.0 29.21% (29.21%)  100.0
Wifi Visible -27.14% (27.14%) 0.0 11.18% (11.18%) 0.0

dimensions, evaluating changes over rhythm parameters and sensor features. We first compare groups across
time windows, and then reverse the comparison to assess differences between time windows within each group.

In this analysis, we consider two types of groupings: (1) demographic categories (e.g., undergraduate vs.
graduate students) and (2) energy-based categories. The energy-based categories are derived by calculating
weekly averages of participants’ daily self-reported cognitive, emotional, and physical energy levels. Participants
are categorized independently each week based on whether their average score is above or below the weekly
population mean. We focus on three representative weeks from the fall semester—early (week 5), midterms (week
10), and finals (week 17)—to examine temporal variation in rhythms across groups. Participants with less than
20% missing data per target week were retained after interpolation-based imputation. For each group and week,
single-subject 24-hour Cosinor models were fitted to support subsequent rhythm variability analyses. Table 7
reports results for RVS, AVS, and MAVS, and Table 8 does the same, but conversely aggregates across sensor
features for all rhythm parameters. In both tables, the left-hand side tables report results for analyses between
groups across time windows (BGAT), and the right-hand side shows variability metrics for analyses between
time windows across groups (BTAG). Both paradigms are discussed in subsequent sections.

5.4 Rhythm Variability Between Groups Across Time (BGAT)

To compare rhythmic patterns between groups across time windows, we first compute the Rhythm Variability
Score (RVS), which quantifies variability by measuring the proportion of rhythm parameters that show statistically
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Table 7. Rhythm Variability Scores (RVS) are calculated between groups for each week (left-BGAT) and between weeks for
each group (right-BTAG), for each target rhythm parameter r* across all sensor features. The Aggregate Variability Scores
(AVS) then aggregate RVS values across all weeks (BGAT) and groups (BTAG) for a given rhythm parameter. Finally, Mean
AVS (MAVS) is calculated by averaging AVS values across all rhythm parameters. Higher RVS values indicate greater rhythmic
divergence between groups in a given week (BGAT) and between weeks in a given group (BTAG), while higher AVS and
MAVS values reflect greater overall variability across time (BGAT) and groups (BTAG) and rhythm parameters, respectively.
Three key rhythm parameters are shown, which make up the basis of the Cosinor model.

Between Time Windows Across Groups (BTAG) for All Sensor Features

Between Groups Across Time Windows (BGAT) for All Sensor Features

Undergraduate vs. Graduate Week 5 Week 10 Week 17 AVS,»  Week 5 vs. Week 10 vs. Week 17 Undergraduate Graduate AVS,-
Mesor 0.33 0.41 0.04 0.26 Mesor 0.53 0.001 0.27
Amplitude 0.24 0.25 0.08 0.19 Amplitude 0.43 0.02 0.23
Acrophase 0.16 0.38 0.21 0.25 Acrophase 0.28 0.01 0.15
MAVSg 0.23 MAVSg 0.22
High vs. Low Cognitive Energy Week 5 Week 10 Week 17 AVS,»  Week 5 vs. Week 10 vs. Week 17 High Cognitive Energy =~ Low Cognitive Energy AVS,-
Mesor 0.10 0.17 0.0 0.09 Mesor 0.47 0.41 0.44
Amplitude 0.22 0.14 0.04 0.13 Amplitude 0.39 0.34 0.37
Acrophase 0.10 0.18 0.04 0.11 Acrophase 0.09 0.23 0.16
MAVSg 0.11 MAVSg 0.32
High vs. Low Emotional Energy Week 5 Week 10 Week 17 AVS,.  Week 5 vs. Week 10 vs. Week 17 High Emotional Energy Low Emotional Energy AVS,.
Mesor 0.11 0.17 0.07 0.12 Mesor 0.53 0.41 0.47
Amplitude 0.18 0.10 0.10 0.13 Amplitude 0.33 0.36 0.34
Acrophase 0.01 0.00 0.07 0.07 Acrophase 0.22 0.08 0.15
MAVSg 0.11 MAVSr 0.32
High vs. Low Physical Energy =~ Week 5 Week 10 Week 17 AVS,.  Week 5 vs. Week 10 vs. Week 17 High Physical Energy ~ Low Physical Energy ~ AVS,-
Mesor 0.21 0.21 0.0 0.14 Mesor 0.47 0.41 0.44
Amp 0.33 0.12 0.04 0.16 Amplitude 0.36 0.39 0.38
Acrophase 0.02 0.02 0.19 0.08 Acrophase 0.15 0.15 0.15
MAVSg 0.13 MAVSg 032

significant differences between groups within each time window, for each rhythm parameter and sensor feature.
The Aggregate Variability Score (AVS) then aggregates these RVS values across all time windows for each rhythm
parameter and sensor feature. Finally, the Mean AVS (MAVS) is calculated by averaging the AVS values across all
rhythm parameters and all sensor features, respectively. Tables 7 and 8 (left-BGAT) present metrics comparing
undergraduate and graduate students, as well as high and low energy levels across weeks 5, 10, and 17. In the

context of our formulation, this corresponds to setting the comparison dimension d € D as a group combination
(e.g., undergraduate vs. graduate), the evaluation context e* € E as individual weeks, and computing RVSJ((D’e ),

AVS¢, and MAVSp as defined in Equations 1 and 2.
5.4.1 Rhythm Variability Between Undergraduate and Graduate Student Groups Across Weeks 5, 10, and 17.

Aggregating Across Rhythm Parameters. Table 7 (left-BGAT) highlights rhythm variability scores between
undergraduate and graduate students across weeks 5, 10, and 17 for each individual rhythm parameter, across all
sensor features. We observe that during the middle of the semester (week 10), the undergraduate and graduate
student groups exhibit the greatest differences across all illustrated rhythm parameters (mesor 0.41, amplitude:
0.25, acrophase: 0.38), which suggests that academic and behavioral routines diverge most between these groups
during mid-semester, potentially due to differing workloads, exam schedules, or adaptation to the academic
environment. By the end of the semester, however, these groups’ rhythms become highly aligned, as reflected by
the lower RVS values (mesor: 0.04, amplitude: 0.08, acrophase: 0.21) across all sensor features. This convergence
indicates that both undergraduate and graduate students experience similar end-of-semester behavioral patterns,
such as reduced activity variability, synchronized sleep schedules, or consistent study habits, driven by shared
academic responsibilities like final exams or deadlines.

The metrics aggregated across all weeks (AVS) show that mesor had the highest variability (0.26) over time
between the two student groups, with acrophase being close (0.25), and amplitude (0.19) having the lowest
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Table 8. Rhythm Variability Scores (RVS) are calculated between groups for each week (left-BGAT) and between weeks for
each group (right-BTAG), for each target sensor feature s* across all rhythm parameters. The Aggregate Variability Scores
(AVS) then aggregate RVS values across all weeks (BGAT) and groups (BTAG) for a given sensor feature. Finally, Mean
AVS (MAVS) is calculated by averaging AVS values across all sensor features. Higher RVS values indicate greater rhythmic
divergence between groups in a given week (BGAT) and between weeks in a given group (BTAG), while higher AVS and
MAVS values reflect greater overall variability across time (BGAT) and groups (BTAG) and sensor features, respectively. A
few sample sensor features are shown, with zero values indicating that two varying dimensions are not significantly different
from each other. A comprehensive version of this table with all sensor features is included in the appendix.

Between Groups Across Time Windows (BGAT) for All Rhythm Parameters Between Time Windows Across Groups (BTAG) for All Rhythm Parameters
Undergraduate vs. Graduate Week 5 Week 10 Week 17 AVS;. ~ Week 5 vs. Week 10 vs. Week 17 Undergraduate Graduate AVS,+
total duration on foot and on bicycle activities 0.32 0.99 0.98 0.76 time at home 0.90 0.24 0.57
standard deviation of steps 0.66 0.99 0.32 0.66 average time spent in a cluster 0.75 0 0.37
maximum steps 0.66 0.67 0.33 0.55 minimum time spent in a cluster ~ 0.75 0 0.37
average battery consumption rate 0 0 0 0 average battery consumption rate 0 0 0
MAVS; 032 MAVSs 0.19
Low vs. High Cognitive Energy Week 5 Week 10 Week 17 AVS;-  Week 5 vs. Week 10 vs. Week 17 High Cognitive Energy Low Cognitive Energy ~ AVS;-
average heart rate 0.97 0.32 0 0.43 time at home 0.66 0.82 0.74
total duration of sedentary bouts 0.33 0.97 0 0.43 total distance traveled 0.49 0.74 0.61
median heart rate 0.97 0.33 0 0.43 average time spent in a cluster 0.48 0.73 0.61
average battery consumption rate 0 0 0 0 entropy heart rate 0 0 0
MAVS; 0.15 MAVS; 0.29
Low vs. High Emotional Energy Week 5 Week 10 Week 17 AVS,. ~ Week 5 vs. Week 10 vs. Week 17 High Emotional Energy Low Emotional Energy = AVS;-
average duration of sedentary bouts 0.33 0.65 0.33 0.43 time at home 0.83 0.65 0.74
time at home 0.33 0 0.65 0.33 minimum time spent in a cluster  0.65 0.72 0.69
maximum duration of sedentary bouts 0.32 0.65 0 0.32 average time spent in a cluster 0.65 0.64 0.65
average battery consumption rate 0 0 0 0 entropy heart rate 0 0 0
MAVSg 0.12 MAVSg 0.28
Low vs. High Physical Energy Week 5 Week 10 Week 17 AVS;. ~ Week 5 vs. Week 10 vs. Week 17 High Physical Energy ~ Low Physical Energy =~ AVSg«
total duration of sedentary bouts 0.65 0.66 0.32 0.55 time at home 0.87 0.67 0.77
maximum steps 0.65 0.33 0.65 0.55 minimum time spent in a cluster ~ 0.56 0.73 0.65
maximum duration of sedentary bouts 0.66 0.66 0 0.44 most common activity type 0.73 0.56 0.64
average battery consumption rate 0 0 0 0 average battery consumption rate 0 0 0
MAVS; 0.17 MAVS; 0.29

variability. This suggests that the groups differed most in their overall activity levels and timing of peak behaviors,
while the strength or regularity of their rhythms remained more stable. The overall score across all rhythm
parameters is 0.23, indicating differences in behavioral rhythms between undergraduate and graduate students
throughout the semester, despite slight variability across specific parameters.

Aggregating Across Sensor Features. Table 8 (left-BGAT) highlights rhythm variability scores between under-
graduate and graduate students across weeks 5, 10, and 17 for selected individual sensor features, across all
rhythm parameters. We observe that, similar to the results in Table 7 and discussion in Section 5.4.1 regarding
aggregating across rhythm parameters, during the middle of the semester (week 10), the undergraduate and
graduate groups exhibit the greatest difference across all illustrated sensor features (total duration active: 0.99, std
steps: 0.99, max steps: 0.67). These observations provide further evidence that academic and behavioral routines
diverge most sharply mid-semester. In contrast, rhythm variability is lower during week 5 and lowest during
week 17 (except for total duration active). This reinforces earlier insights, highlighting consistent patterns of
temporal behavioral divergence between groups. Several sensor feature comparisons resulted in variances that
are not statistically different, and are therefore reported as 0s. The scores aggregated across all weeks reveal
substantial differences in activity-related behaviors between undergraduate and graduate students. Among the
sensor features, total duration active exhibited the highest variability (0.76), followed by the standard deviation
of steps (0.66) and maximum steps (0.55). These results suggest that the two groups differ meaningfully in their
biobehavioral rhythms related to physical activity—potentially reflecting differences in academic schedules,
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campus engagement, or lifestyle patterns. The average variability score across all sensor features is 0.32, which is
higher than the average observed across rhythm parameters. This indicates that the two student populations
exhibit even greater divergence in observed behaviors than in modeled rhythms, underscoring the value of
multimodal sensing for capturing nuanced group-level differences.

5.4.2 Rhythm Variability Between High and Low Energy Groups Across Weeks 5, 10, and 17.

Aggregating Across Rhythm Parameters. Table 7 (left-BGAT) highlights rhythm variability scores between high
and low energy levels across weeks 5, 10, and 17 for each individual rhythm parameter, across all sensor features.
We specifically examine differences across cognitive, emotional, and physical energy levels. When comparing
high and low energy groups across rhythm parameters, we observe that week 17 consistently exhibits the lowest
variability across most parameters and energy types, suggesting increasingly similar biobehavioral rhythms and a
convergence in routines between groups. The exception is acrophase in the emotional (0.07) and physical energy
(0.19) groups, where variability remains elevated, indicating persistent differences in the timing of peak behaviors
despite overall convergence in other rhythm dimensions. These patterns echo those observed comparing graduate
and undergradute student groups, with week 17 resulting in closer rhythmic patterns across groups.

The highest values are reported for amplitude, specifically for week 5, with values of 0.22 for cognitive energy
groups, 0.18 for emotional energy groups, and 0.33 for physical energy groups. These early-semester differences
in amplitude may reflect initial differences in motivation, physical activity routines, or lifestyle structure. The
fact that amplitude, more than mesor or acrophase, shows the greatest early divergence also implies that energy
level differences are most pronounced in the strength or intensity of behaviors, rather than their average levels
or timing. However, these amplitude differences appear to diminish over time, indicating possible behavioral
convergence between the two groups as the semester progresses.

Comparing aggregated scores across time, the physical energy groups exhibited the highest AVS values for each
rhythm parameter, except for acrophase, relative to the cognitive and emotional energy groups. This suggests that
individuals with high versus low physical energy demonstrated the greatest overall variation in their rhythmic
patterns, particularly in mean levels (mesor) and strength of expression (amplitude). This trend is reinforced by
the physical energy groups having the highest overall MAVS value (0.13), exceeding that of the cognitive and
emotional groups, both of which had MAVS values of 0.11, indicating greater global variability in rhythms driven
by physical energy level differences.

Aggregating Across Sensor Features. Table 8 (left-BGAT) highlights rhythm variability scores between low and
high energy groups across weeks 5, 10, and 17 for selected individual sensor features, across all rhythm parameters.
Selected sensor features significantly different between groups are shown. We specifically analyze differences
across cognitive, emotional, and physical energy levels. We observe that across all energy-level groups, week
17 consistently exhibits the lowest rhythmic variance, indicating that by the end of the semester, high and low
energy groups tend to converge in behavior. The exception is the time at home feature in the emotional energy
group, which still shows some divergence. This supports earlier findings from rhythm parameter analyses, where
week 17 also showed the highest similarity between groups. Among the energy groups, physical energy groups
demonstrated the greatest variability, which aligns with the nature of the features analyzed (e.g., steps, sedentary
bouts, physical activity). For the cognitive energy groups, heart rate-related features had high variability in
week 5 (0.97), decreased in week 10 (0.33), and showed no variability in week 17—suggesting a convergence
in physiological regulation over time. For emotional energy groups, sedentary bout features showed moderate
variability in week 5 (0.32), peaked in week 10 (0.65), and dropped again in week 17 (0.33 for average duration, 0.00
for max duration), indicating that emotional energy may impact behavioral rhythms most during the mid-semester
period. Finally, the physical energy groups maintained consistently high variability in sedentary and step-related
features, with the strongest differences observed in week 5, slightly less in week 10, and the lowest in week

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 4, Article 241. Publication date: December 2025.



241:18 « Zhaoet al.

17—mirroring the general trend of behavioral convergence as the semester progresses. When aggregated over
time, the individual sensor features have similar variabilities, ranging from 0.32-0.55 across the energy level
groupings. The scores then averaged across all sensor features show that the variance between physical energy
groups have the largest variability (0.17), followed by cognitive energy groups (0.15), and emotional energy
groups (0.12).

5.5 Rhythm Variability Between Time Windows Across Groups (BTAG)

To compare rhythmic patterns between time windows across groups, we compute the Rhythm Variability
Score (RVS), which quantifies rhythmic variance by measuring the proportion of rhythm parameters that show
statistically significant differences between time windows, for each group, rhythm parameter, and sensor feature.
The Aggregate Variability Score (AVS) then aggregates these RVS values across all groups for each rhythm
parameter and sensor feature. Finally, the Mean AVS (MAVS) is calculated by averaging the AVS values across all
rhythm parameters and all sensor features, respectively. Tables 7 and 8 (right-BTAG) highlight calculated metrics
comparing between week 5, week 10, and week 17 across undergraduate and graduate students, as well as high
and low energy levels.

5.5.1 Rhythm Variability Between Weeks 5, 10, and 17 Across Undergraduate and Graduate Student Groups.

Aggregating Across Rhythm Parameters. Table 7 (right-BTAG) highlights rhythm variability scores between
weeks 5, 10, and 17 across undergraduate and graduate student groups for each individual rhythm parameter,
across all sensor features. We observe that rhythm variability is substantially higher for undergraduate students
compared to graduate students over time (e.g., mesor of 0.53 compared to 0.001). This suggests that undergraduate
students experience greater fluctuations in the overall level, intensity, and timing of their behaviors on a week-to-
week basis, whereas graduate students demonstrate more stable and consistent rhythms across the semester. The
0.001 mesor value for graduate students further highlights this consistency in their behavioral means over time.
The aggregated scores across both the undergraduate and graduate groups reveal the highest variability for the
mesor (0.27), followed by amplitude (0.23) and acrophase (0.15). This suggests that the mean levels vary the most,
while timing of rhythms (acrophase) is relatively stable. Averaging across all rhythm parameters yields a MAVS
value of 0.22, indicating a moderate level of rhythmic divergence between the two student populations over time.

Aggregating Across Sensor Features. Table 8 (right-BTAG) highlights rhythm variability scores between weeks
5, 10, and 17 across undergraduate and graduate student groups for each selected individual sensor feature, across
all rhythm parameters. We observe that, consistent with our analysis aggregating across rhythm parameters, the
undergraduate student group exhibits greater variability for each sensor feature shown compared to the graduate
group. For undergraduates, the RVS for time at home reaches 0.90, while both average time spent in a cluster
and minimum time spent in a cluster have variability scores of 0.75. In contrast, the graduate group shows no
variability (0.00) for these features, except for time at home, which has a modest value of 0.24. These results
reinforce the conclusion that undergraduate students display more behavioral fluctuation over time, whereas
graduate students maintain more stable routines. When aggregating across groups, the AVS score is highest for
time at home (0.57), highlighting it as the most variable behavioral feature between populations. Averaging across
all sensor features yields a MAVS value of 0.19, indicating moderate overall divergence in behavioral rhythms
between the two groups.

5.5.2  Rhythm Variability Between Weeks 5, 10, and 17 Across High and Low Energy Groups.

Aggregating Across Rhythm Parameters. Table 7 (right-BTAG) presents rhythm variability scores between
weeks 5, 10, and 17 across high and low energy levels for each individual rhythm parameter, across all sensor
features. We continue our analysis across cognitive, emotional, and physical energy levels. We observe that most
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variability scores are moderately high overall, indicating that substantial variability does exist between weeks
across both high and low-energy groups. This suggests that weekly fluctuations in rhythmic patterns are present
regardless of energy level. One exception to this pattern is acrophase. Acrophase consistently shows the lowest
variability across all energy types, suggesting that the timing of peak behavior remained relatively stable over
time, regardless of energy level. Interestingly, we observe contrasting patterns in acrophase variability across
energy types over time. For the cognitive energy group, high-energy individuals exhibit substantially lower
acrophase variability (0.09) compared to their low-energy counterparts (0.23), indicating more consistent timing
in their behavioral rhythms. In contrast, within the emotional energy group, high-energy individuals display
greater acrophase variability (0.22) than low-energy individuals (0.08), suggesting that emotional arousal may
contribute to fluctuations in the timing of daily routines. These contrasting trends highlight that the impact
of energy levels on rhythm stability is dimension-specific and may reflect underlying differences in cognitive
control versus emotional response.

Aggregating the RVS values across groups reveals that mesor consistently exhibits the greatest variability,
followed by amplitude, and then acrophase across all energy-level comparisons. This indicates that differences in
the average level of behavior are most pronounced, while the timing of rhythmic peaks remains relatively stable.
The overall MAVS value of 0.32 across group comparisons further supports this trend, reflecting a consistent and
meaningful degree of rhythm variability across all energy dimensions.

Aggregating Across Sensor Features. Table 8 (right-BTAG) highlights rhythm variability scores between weeks
5, 10, and 17 across high and low energy groups for selected sensor features, across all rhythm parameters. The
table highlights only those features that exhibited notable differences between energy groups. We continue our
analysis by examining cognitive, emotional, and physical energy dimensions. Across all energy types, sensor-level
variability remains consistently high, indicating that behavioral features fluctuate meaningfully over time between
high and low energy groups. Within the cognitive energy groups, the low energy group exhibits consistently
greater variability than the high energy group, particularly in time spent at home, total distance traveled, and
average time spent in a cluster. This suggests that individuals with lower cognitive energy experience more
fluctuation in their movement and location-based behaviors. For the emotional and physical energy groups, the
patterns are more mixed. Interestingly, in contrast to the cognitive group, individuals with higher emotional or
physical energy tend to show greater variability in home-stay behavior, suggesting more dynamic daily routines
in these populations. Aggregating across groups, time at home emerges as the most variable feature overall,
followed by minimum time spent in a cluster, particularly for emotional and physical energy comparisons. Finally,
averaging variability scores across all sensor features yields a MAVS of 0.29 for both cognitive and physical
energy groups, and 0.28 for the emotional energy group. These findings underscore that energy level distinctions,
especially in cognitive and physical domains, manifest in consistent, measurable variations in behavioral rhythms
over time.

Table 9. Rhythm variability scores (RVS) comparing two student groups for each week (left: BGAT) and between weeks
for each group (right: BTAG) for each target rhythm parameter aggregated across all features. Metrics are computed as
described in Table 7. Zero values indicate no significant rhythmic difference. AVS aggregates RVS across weeks, and MAVS
averages AVS across parameters. Ours stands for our dataset. CE stands for the College Experience dataset.

Between Groups Across Time Windows (BGAT) Between Time Windows Across Groups (BTAG)

Oursvs.CE Nov15 Nov22 Nov29 Dec6 Dec13 Dec20 Dec27 AVS,- 7 Weeks Ours CE AVS,
Mesor 0.665 0.667 0.999 0.991 0.667 0.666 0.937 0.799 Mesor 0.299 0.171 | 0.235
Amplitude  0.666 0.661 0.973 0.976  0.645 0.655 0.653 0.747 Amplitude 0350 0.116 | 0.233
Acrophase 0.320 0.000 0.955 0.965 0.664 0.332 0.660 0.557 Acrophase 0.119 0.000 | 0.060
MAVSg 0.701 MAVSg 0.176
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Table 10. Rhythm variability scores (RVS) comparing two student groups for each week (left: BGAT) and between weeks
for each group (right: BTAG) for each feature across all rhythm parameters. Metrics are computed as described in Table 8.
AVSg: aggregates RVS across weeks, and MAVSs averages AVS across features. Ours stands for our dataset. CE stands for
the College Experience dataset.

Betven Time Windows Actoss Groups (BTAG)
Ours vs. CE Nov15 Nov22 Nov29 Dec6 Dec13 Dec20 Dec27 AVS;- 7 Weeks Ours CE AVS;+
sum duration of unlock 0.985 0.667 0.991 0.995  0.999 0.999 0.999 0.948 sum of steps 0.515 0.186 | 0.351
sum of steps 0.667 0.664  0.986 0.988 0.656  0.661  0.323  0.706  duration in vehicle 0.420 0.040 | 0.230
duration in vehicle 0.000 0.000 0.999 0.993 0332  0.000 0.979 0.472  sum duration of unlock 0.092 0.005 | 0.049
MAVSg 0.709  MAVSg 0.210

5.6 Additional Validation

To validate and highlight the value of our dataset and analytical method, we benchmark our approach with
the College Experience dataset. We focus on the overlapping period between the two studies and analyze data
from undergraduate students during the Fall 2021 semester. Due to differences in semester lengths and academic
calendars at two universities, we select a seven-week window (2021-11-15 to 2022-01-02) that includes the final
exam periods and partial winter breaks of both datasets. This period enables a comparison of rhythm variability
between the two student groups and observes potential similarities and differences influenced by the university
calendars and holiday events.

For this analysis, we include three sensor features shared across both datasets that had sufficient data: sum of
steps, duration of screen unlock, and duration in vehicle. While the feature values may be influenced by external
factors, such as campus environment and local weather conditions, they are sufficiently similar to demonstrate
that our method supports cross-dataset comparisons.

Aggregating Across Sensor Features. Table 9 (BGAT, left) presents rhythm variability scores (RVS) between
groups across time windows, calculated separately for each rhythm parameter. The results indicate strong
between-group rhythm variability. Mesor and amplitude consistently exhibit high RVS values across all seven
weeks, suggesting substantial and persistent differences in activity rhythms between the two student groups. For
all three rhythm parameters, RVS values peak around November 29 and December 6, coinciding with differences
in academic schedules. Students in the College Experience dataset were on break during these weeks, whereas
students in our dataset were still in class. Beyond these two weeks, no simultaneous peaks are observed across
all three parameters. In contrast to mesor and amplitude, acrophase RVS values remain relatively low outside the
weeks of November 29 and December 6, as shown in its AVS,~. The value of 0.00 during the week of November 22
suggests that both groups exhibited similar timing of peak activity, likely due to the influence of Thanksgiving.
Table 9 (BTAG, right) shows RVS values across weeks within each group for each of rhythm parameter. Our
dataset shows higher within-group variability across all rhythm parameters compared to the College Experience
dataset, reflecting greater temporal fluctuation in activity levels. Notably, acrophase RVS values in the College
Experience dataset remain at 0.00, indicating stable daily peak activity times across the seven-week period.

Aggregating Across Rhythm Parameters. Table 10 (BGAT, left) shows that duration of screen unlock has the
highest AVS;-, indicating the greatest between-group rhythm variability, followed by sum of steps and duration
in vehicle. Meanwhile, RVS values for duration in vehicle are 0.00 during the weeks of November 15, November
22, and December 20, which are weeks likely influenced by shared events, such as Thanksgiving and Christmas.
Additionally, we also observe an increase in RVS during the weeks of November 29 and December 6, when our
university was in session, but the College Experience university was on break. Table 10 (BTAG, right) reveals
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greater inter-group rhythm variability in our dataset compared to the College Experience dataset for all features.
While sum of steps and duration in vehicle exhibit high rhythm variability, duration of screen unlock remains
relatively stable between weeks within each group, indicating that its rhythm pattern is stable within each student
group between weeks but differs between the two groups in any given week.

Overall, we observe that the between-group variability is greater than the within-group variability, which
reflects that the two student populations experienced different rhythm patterns while maintaining relatively
stable patterns over time. Additionally, the alignment between peaks in RVS scores and the differences in academic
calendars across two groups demonstrates our methodology’s sensitivity to time-dependent changes. These
observations highlight the value of our approach for comparing rhythm variability. Although the analysis is
limited to three sensor features, it validates the capability of our method to compare rhythm patterns across
different datasets.

6 DISCUSSION

Our novel dataset and methodology enable analysis of multidimensional cyclic behaviors within college students.
By combining high-frequency passive sensing with daily self-reports collected over several months, our dataset
offers a rich, longitudinal view into participants’ biobehavioral rhythms and internal states. The combination
of active and passive data facilitates a more holistic understanding of how daily routines and cyclic patterns
manifest across diverse contexts. To harness the full potential of these data streams, we utilize existing methods
in combination with a new technique designed specifically to extract, quantify, and compare rhythmic structures
embedded in passively sensed behavioral signals.

We introduce and define variability metrics to examine the variance in cyclic behavior across multiple modalities
and evaluation contexts. The first is Rhythm Variability Score (RVS), which quantifies the degree of rhythmic
divergence between dimensions across an evaluation context for each fixed parameter. These values can then be
aggregated across all evaluation contexts into an Aggregate Variability Score (AVS) to provide broader assessment
of rhythmic divergence. These AVS values can be further averaged across all parameters to yield the mean AVS
(MAVS). These hierarchical levels of analysis enable the capture of both localized differences and broader trends
in rhythmic behavior. Future studies can leverage these metrics to quantitatively assess rhythm variability across
diverse contextual dimensions, providing a scalable foundation for personalized and population-level behavioral
analysis. We envision this framework improving the reliability of behavioral inferences in sensing platforms by
accounting for rhythm stability and variability over time.

To validate the presence of rhythms in our dataset, we conducted periodicity analysis, confirming dominant
24-hour cycles across behavioral features, along with intra-day and multi-day rhythms. Significant periods
followed two trends: some behaviors showed many rhythms at short periods across nearly all participants, while
others clustered at intuitive period lengths (e.g., 8, 12, or 24 hours). These patterns varied by sensor and feature,
highlighting distinct underlying rhythms and the complexity of human behavior across multiple timescales. We
then analyzed the impact of external events on rhythms and found that daily rhythms remain stable during the
fall and spring semesters but are significantly disrupted during winter break. Further, we used the Cosinor model
to extract rhythm parameters that capture temporal dynamics beyond traditional features. For instance, revealing
the consistency and periodicity of behaviors rather than just the overall behavior level, enabling more nuanced
behavioral interpretation. These insights can inform the design of context-aware ubiquitous computing systems
that adapt to users’ natural rhythms, detect disruptions indicative of life changes or health issues, and deliver
timely interventions or recommendations.

We applied our rhythm variability methods to our dataset to assess how rhythmic patterns vary across both
group and temporal dimensions, evaluating changes over rhythm parameters and sensor features. We analyzed
variances between groups across time windows, and also between time windows across groups. We specifically
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focused on comparing undergraduate and graduate students, as well as cognitive, emotional, and physical energy
groupings, in addition to three key weeks in a university semester (week 5, week 10, and week 17).

Comparing rhythm variability between groups across time reveals that during the fall semester, undergraduate
and graduate students have the greatest rhythmic divergence mid-semester across both sensor features and rhythm
parameters. This is likely due to differing academic demands, however their rhythms converge by the end of the
term, reflecting shared behavioral patterns around the end of the semester. Results additionally reveal substan-
tial differences between groups in activity-related behaviors, indicating meaningful divergence in biobehavioral
rhythms linked to physical activity, likely reflecting underlying lifestyle or routine differences. Our analysis also
demonstrates differences in participants’ rhythms based on their internal state each week. Comparing energy
types across time, we see that at the end of the semester, there is the lowest variability between energy groups,
suggesting similar biobehavioral rhythms and a convergence in routines between groups. The highest variances
are found in amplitude, specifically for the beginning of the semester, between the different energy groupings.
Early-semester differences in amplitude suggest that group disparities are most pronounced in behavioral inten-
sity, likely due to motivation or routine differences, but then these differences diminish over time, indicating
behavioral convergence. When aggregated over all time contexts, physical energy groups exhibit the highest and
most persistent variability, especially in activity-related features like steps and sedentary bouts.

Comparing rhythm variability between weeks across group contexts reveals further insights. Rhythm vari-
ability is substantially higher for undergraduate students compared to graduate students over time, suggesting
that undergraduate students experience greater fluctuations in the overall level, intensity, and timing of their
behaviors on a week-to-week basis, whereas graduate students demonstrate more stable and consistent rhythms
across the semester. This pattern holds across both rhythm parameters and sensor features, with undergraduate
students showing significantly greater variability in time spent at home and in clusters, indicating that graduate
students maintain more consistent location-based routines. Analyzing internal energy groups, the variability
scores are generally high, indicating that weekly fluctuations in rhythmic patterns are present regardless of energy
level. We observe that the effect of energy levels on rhythm timing varies by energy type: high cognitive energy
is linked to more stable daily timing, while high emotional energy corresponds to greater fluctuations—suggesting
dimension-specific influences of internal state on rhythm stability. We also find that individuals with reported low
cognitive energy show more variability in their movement and location behaviors, while those with high emotional
or physical energy tend to have more dynamic time at home routines, highlighting different patterns of behavioral
fluctuation across energy types, with time at home being the most variable feature reported.

We further validated our method on the College Experience Dataset by comparing rhythm variability across
a shared seven-week academic period. Using three common sensor features, our metrics revealed consistent
differences in rhythm patterns—particularly in mesor and amplitude—between the two student groups. These
differences aligned with academic calendar events, such as finals and winter break, supporting the ability of our
rhythm divergence metrics to capture behavioral variation across time windows and groups.

Our analysis underscores the practical value of rhythm modeling for personalized behavioral insights. By
revealing how different group categorizations exhibit distinct rhythmic patterns within the same dataset, they
highlight the importance of contextual framing when interpreting behavioral variability. For the ubiquitous
computing community, these insights can inform the design of adaptive, context-aware systems that tailor
interventions to users’ natural rhythms, detect disruptions indicative of health or life changes, and improve the
timing and personalization of recommendations. Disruptions and irregularities in human rhythms have been
found in patients with severe disorders (e.g., cancer [38], neurodegenerative diseases [60], and sleep disorders
[34]), indicating they may offer novel opportunities for mobile health researchers to identify users at risk for such
illnesses. Similarly, biobehavioral rhythms relate to humans’ propensity to socialize [37, 66], indicating our data
and methods may be useful for better understanding these cycles, as well as the external behaviors that relate to
them. They also provide a framework for improving the reliability and interpretability of sensor-based behavioral
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inferences at both individual and population scales. In all, these tools will help passive monitoring systems to
better understand how participants’ behaviors change, and how their current data relates to the previously sensed
information.

6.1 Limitations and Future Work

The focus of this paper is to introduce a longitudinal multimodal mobile dataset and corresponding methodology
primarily designed for investigating cyclic biobehavior. While we provide an analysis of biobehavioral rhythm
variation and stability across time windows and in population groups, we do not focus on a specific health
outcome. However, our dataset contains sensor data and self-reports that can be used to study mental and
physical health. The sensor data provides valuable insight into physical activity, physiology, and social behaviors,
which can be connected to internal rhythms and external events. Change in biobehavioral rhythms, particularly
circadian rhythms, is inherently associated with an individual’s health and wellness. Similarly, the self-report
data grants insight into participants’ internal cognitive and emotional states, enabling future work to use our
dataset to study the relationship between health indicators and the biobehavioral rhythms. Additionally, we
collected numerous health and lifestyle questionnaires from each participant at the beginning and end of the
study, which enable further analyses of the connection between behaviors and well-being.

Our dataset represents a subset of a single university population, which may limit the generalizability of
our analysis to broader and more diverse populations. Factors such as age, occupation, cultural context, or
geographic location may significantly influence behavioral rhythms. Our dataset consists of undergraduates and
graduate students, making it slightly more diverse than existing passive sensing datasets, which only include
undergraduates [42, 62]. However, including participants who are not university students will further improve
the generalizability of the data. Our future plan includes expanding the study to collect data from different
demographics to capture various lifestyles affecting biobehavioral rhythms.

Moreover, as is common with passive sensing studies, our dataset contains missing data. We addressed this
through interpolation or, in cases of extensive data gaps, by excluding affected participants. While these methods
help preserve dataset integrity, they may also introduce bias. Future research could explore more sophisticated
imputation techniques or simulation-based approaches to better infer missing segments and assess their influence
on rhythm analysis outcomes.

The dataset was collected towards the end of the COVID-19 pandemic. By September 2021, when onboarding
began, few COVID-19 precautions remained in place at our university. Although strict measures had been
enforced the previous year, the only remaining rule required masks to be worn indoors until March 21, 2022.
After that date, masks were only required in classrooms and the university hospital. While these policies were
in effect, they were minimally invasive and unlikely to significantly influence participant behavior. The timing
of our data collection provides a unique opportunity to capture participants’ behaviors and self-reports as they
adjust to post-COVID college life.

Our Cosinor analysis successfully identified rhythmic patterns in the extracted behavioral features. However,
these features reduce the original high-frequency data to an hourly resolution. This transformation is useful,
as it converts raw sensor data into meaningful features, such as time spent at home. But, this may limit our
ability to detect and analyze rhythm cycles shorter than one hour that are present in the finer-grained data.
Similarly, we analyzed group rhythmic differences across weekly windows. This may obscure finer-grained,
day-to-day variations in behavior. However, this approach offers several advantages: it captures broader daily
rhythm patterns, accounts for weekday—weekend variability, minimizes the influence of transient noise, and
increases robustness to missing data, thereby enabling more consistent and reliable modeling across participants.
Future work could explore feature extraction at a more granular scope.
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Another limitation involves using subjective energy ratings, reported daily by participants, to form energy-
based groupings rather than longer multi-question questionnaires. Several questions in our daily surveys were
adopted from the NASA TLX [29]. To ensure that participants did not feel burned out from completing the daily
surveys, we designed it to be short and unobtrusive. There are no validated short questionnaires that collect
information about emotional, cognitive, and physical energy. As such, we developed Likert scale questions that
assessed each type of energy. Similar questions have been used in other datasets to evaluate participants’ mood
and emotions [9, 32, 65].

7 CONCLUSION

Despite the significance of behavioral cycles, research on passively sensed behavior has often overlooked cyclical
rhythmic patterns. We present a longitudinal multimodal mobile dataset for capturing and modeling biobehavioral
rhythms that includes high-frequency sensor data and daily self-reports from 166 participants collected over
up to 16 months. Additionally, we introduce three new metrics for comparing biobehavioral rhythms among
different groups and over time. We apply these techniques to our dataset, revealing distinct differences in rhythms
between undergraduate and graduate students, as well as among participants with varying energy levels each
week. We also observe clear variations in these rhythms between the academic semester and winter break. Our
dataset and methods provide a strong foundation for future research on capturing and modeling human rhythms.
For the ubiquitous computing community, our analysis insights can support context-aware systems that align
with users’ routines, detect disruptions linked to health or life changes, and improve the timing of interventions
and recommendations.
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Appendix A: Comparison of Passively Sensed Behavior Datasets

Continuous Daily Physiology Behavior

. X . Sensor
Data Collection Self-Reports  Sensing  Sensing €NSOrs

Dataset Sample Size Duration

Screen status, location,
battery, calls, WiFi,
Human Rhythms (Ours) 166 Up to 16 Months v v v v activity recognition, steps,
heart rate, activity level,
sleep, floors
Location, phone usage,
GLOBEM [62] 497 4 Years X X v v calls, bluetooth,
physical activity, sleep
Sleep, conversations,
College Experience [42] 215 4 Years v X b 4 v physical activity, location,
app usage, brain imaging data
Sleep, temperature,
Lifesnaps [65] 71 4 Months v v v X distance, exercise, heart rate
mindfulness, stress
Sleep, conversation,
physical activity, location,
StudentLife [58] 48 10 Weeks v v b 4 v light, bluetooth, audio,
WiFi, screen status,
phone charge, app usage
location, physical activity,

DeepStress [31] 24 6 Weeks v v X v
phone app usage
Connectivity, environment
Diversity One [9] 782 4 Weeks v v X v motion, position,
app usage, device usage
Moodpath [8] 113 2 Weeks v v X v -
Sleep, physical activity,
Teo et al. [56] 482 Up to 11 Days v b 4 "4 b 4 heart rate, Genomic DNA
GPS, battery, calls,
WiFi, connectivity,
K-EmoPhone [32] 77 7 Days v v 4 4 data traffic, ringer mode,

screen, bluetooth,
media entries, messages,
calories, steps
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Appendix B: Pre- and Post-Baseline Survey Questionnaires

Questionnaire Description

Big Five Personality Index [55]

Models participants’ personality along the dimensions of openness, conscientiousness, extroversion,
agreeableness, and neuroticism. This specific version of the questionnaire also included 15 smaller
personality facets.

The Status Ladder [5]

Participants rank, on a ten-point scale, how important they believe themseleves to be in their
community.

Emotional, Physical and
Cognitive Regulation

Collects participants’ techniques to regulate sadness, tension, anger, and tiredness. They also report
information about their sleep and exercise habits.

Brief COPE [12]

Identifies how participants regulate their stress.

Brief Resilience Scale [54]

Learns how participants recover from stressful experiences.

Social Media Usage

Participants report how frequently they check and post to social media.

12 Item Short Health Form [59]

Identifies the participants’ health status and how their wellbeing interferes with daily functioning.

Cohen-Hoberman Inventory
of Physical Symptoms (CHIPS) [14]

Reports how frequently participants have experiences different physical symptoms in the last two
weeks.

Center for Epidemiological
Studies Depression Scale (CES-D) [47]

Collects how frequently participants experience different symptoms of depression.

Pittsburgh Sleep Index
(PSQI) [10]

Evaluates participants’ sleep quality.

Perceived Stress Scale [15]

Determines how frequently participants experience common causes of stress.

College Student Stressful
Event Checklist [30]

Asks whether participants have experienced various stressful events that may occurring during
their time in college

Interpersonal Support
Evaluation Checklist-12 (ISEL-12) [16]

Investigates how supported participants feel.

UCLA Loneliness Scale [50]

Evaluates how often participants experience symptoms of loneliness.

Need to Belong Scale [35]

Asks how important participants consider social connections and acceptance to be.

Mindful Attention
Awareness Scale [7]

Identifies how conscious participants are of their activities and internal state during the day.

Self-Compassion Scale:
Short Form [48]

Investigates how compassionate participants are to themselves.

Two-Way Social Support [53]
Scale

Asks participants how they receive and provide emotional support

Educational Affective

Participants report their expected academic performance for the semester, and how they will feel

Forecasting if they surpass or fail to meet their expectations.

3-Item Growth Mindset - . . a1 .

Measure Evaluates whether participants believe practicing a skill is worth the required effort.
Stress Mindset Measure [19] Asks participants whether stress is a harmful challenge or a growth opportunity
Drug and Alcohol Usage Identifies how frequently participants engage in drinking and smoking.
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Appendix C: Distribution of Days of Data
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Fig. 4. The number of days of data we collected from participants for A) Fitbit, B) AWARE, C) Daily Surveys. We collected a
median of 220 days of Fitbit data, 212 days of Aware data, and 160 days of survey data from each participant.
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Appendix D: Mathematical Description
RVS

Equation 3 presents the RVS formulation for each target rhythm parameter, while Equation 4 defines the RVS
for each target sensor feature. In both cases, the RVS is computed within a fixed evaluation context e* € E by
comparing across varying dimensions in D. A visual summary of calculations is shown in Table 11.

RVSi?’E*)ﬁi( Z{P,sd—a}(l—zpmd ,sd—a})) 3)

a=1 deD deD
n
(D) _ 1 (¢")
Rvs! _;Z(CDZﬂpHdSa}(l—Zps,ad ) <a })) @
a=1 deD deD

Table 11. Visual summary of Rhythm Variability Score (RVS) computed using derived Equations 3 and 4. An RVS is calculated
for each fixed rhythm parameter r* and each fixed sensor feature s*, providing a RVS across pairwise comparison dimensions
dij € D, where i < j, within a fixed evaluation context e*.

Rhythm Parameter r* = r; Rhythm Parameter r* = r,
A ™
di dis -+ dpj-1p| RVSEE ) di2 diz -+ dpl-ip| RVSiPe )
(D,e") (D,e")
Sensor Prisidiz Prisidys *°° Prisidip_y ) |RVSs; Prasidiz Prasidis " Prasidipi_q)p |RVSs,
Feature : : :
st =
D, D.e*
Sm |Prismdis Prismdis Prlsmd|D| LD| RVngE) Prasmdiy Prasmdis Prnsmd\m 1D RVSéme)
Rvs (D<) RVS(D <) RVS(De )

AVS and MAVS

We can instantiate the general formulations of AVS and MAVS (Equation 2) for both rhythm-centric and sensor-
centric cases. Specifically, we first compute the AVS for a fixed feature f € {s* r*}, and then average these scores
across all rhythm parameters or sensor features to obtain MAVS, a global measure of rhythm difference. The
transition from AVS to MAVS is denoted using a directional arrow. Table 12 illustrates the aggregation and
averaging process.

AVS,- = |E I Z RVSY =  MAVSg = Z AVS, (5)
ecE reR

AVS,. = El Z RVS(”Y =  MAVSs = Z AVS, (6)
ecE sES
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Table 12. Visual representation of the computation of Mean Aggregate Variability Score (MAVSFE) from Aggregate Variability

(D.e)
Scores (AVSy). Each RVSf

then AVS ¢ is computed by averaging over all e. MAVSF is obtained by averaging AVS¢ over all f € F.

is first aggregated across all comparison dimensions d € D for each evaluation context e € E,

Eval. Context e € E ‘ er e ces eE| ‘ AVSy
D,

Rvs (<) Rvs e RvsiPe) Rvs(1 e AVS

(D,e) (D,e1) (D,e5) (D.eig))
RVS ¢ RVS ) RVS >0 ... RVS, AVSy,
(D) (Der) (D) L (Dejgy)
RVS i RVS i RVS i RVS i AVS
MAVSE 4 3 AVS

IF] feF f
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Appendix E: Variability Scores of Behavioral Features

Between Groups Across Time Windows (BGAT) for All Rhythm Parameters

241:33

Between Time Windows Across Groups (BTAG) for All Rhythm Parameters

Undergradaute vs. Graduate Week 5 Week 10 Week 17 AVS,- Week 5 vs. Week 10 vs. Week 17 Undergradaute Graduate AVS;-
total duration on foot and on bicycle activities 0.32 0.99 0.98 0.76 time at home 0.9 0.24 0.57
standard deviation of steps 0.67 1.0 0.33 0.66 average time spent in a cluster 0.75 0.0 0.37
total duration of vehicle activities 0.66 0.66 0.33 0.55 minimum time spent in a cluster 0.75 0.0 0.37
average number of steps 0.65 0.67 0.32 0.55 most common activity type 0.75 0.0 0.37
maximum steps 0.66 0.67 0.33 0.55 mean step cadence 0.73 0.0 0.37
mean step cadence 0.65 0.67 0.32 0.55 average number of steps 0.73 0.0 0.37
minimum duration of sedentary bouts 0.64 0.33 0.66 0.55 sum of steps 0.73 0.0 0.37
maximum heart rate 0.66 0.67 0.32 0.55 average movement speed 0.73 0.0 0.37
average heart rate 0.66 0.66 0.32 0.55 total duration of vehicle activities 0.5 0.16 0.33
sum of steps 0.65 0.67 0.32 0.55 total distance traveled 0.58 0.0 0.29
mode heart rate 0.66 0.64 0.32 0.54 maximum steps 0.58 0.0 0.29
normalized location entropy 0.67 0.66 0.0 0.44 standard deviation of steps 0.58 0.0 0.29
standard deviation of time spent in clusters 0.67 0.66 0.0 0.44 location entropy 0.58 0.0 0.29
number of significant locations 0.67 0.66 0.0 0.44 number of active wifi connections 0.5 0.08 0.29
number of location transitions 0.67 0.66 0.0 0.44 time spent at location outliers 0.5 0.08 0.29
average movement speed 0.66 0.66 0.0 0.44 total duration on foot and on bicycle activities 0.58 0.0 0.29
location entropy 0.67 0.66 0.0 0.44 standard deviation of time spent in clusters 0.58 0.0 0.29
average duration of sedentary bouts 0.32 0.33 0.65 0.44 number of significant locations 0.5 0.0 0.25
median heart rate 0.66 0.66 0.0 0.44 variance of movement speeds 0.5 0.0 0.25
maximum duration of sedentary bouts 0.32 0.65 0.33 0.43 number of location transitions 0.5 0.0 0.25
standard deviation of heart rate 0.32 0.65 0.33 0.43 normalized location entropy 0.5 0.0 0.25
total duration of sedentary bouts 0.32 0.67 0.32 0.43 difference between maximum and mode heart rate  0.49 0.0 0.25
most common activity type 0.32 0.99 0.0 0.43 maximum duration of sedentary bouts 0.49 0.0 0.25
number of activity recognition activities 0.32 0.33 0.33 0.33 total duration of sedentary bouts 0.49 0.0 0.25
number of active wifi connections 0.66 0.0 0.33 0.33 minimum duration of sedentary bouts 0.49 0.0 0.24
difference between minimum and mode heart rate 0.0 0.66 0.33 0.33 average duration of sedentary bouts 0.48 0.0 0.24
variance of movement speeds 0.33 0.66 0.0 0.33 number of sedentary bouts 0.48 0.0 0.24
minimum heart rate 0.66 0.32 0.0 0.33 number of activity recognition activities 0.48 0.0 0.24
total distance traveled 0.33 0.66 0.0 0.33 maximum time spent in a cluster 0.4 0.0 0.2
difference between maximum and mode heart rate  0.32 0.65 0.0 0.32 standard deviation of heart rate 0.33 0.0 0.16
time spent at location outliers 0.0 0.65 0.32 0.32 difference between minimum and mode heart rate  0.24 0.0 0.12
number of activity recognition events 0.0 0.33 0.33 0.22 duration of sedentary activities 0.23 0.0 0.12
number of sedentary bouts 0.0 0.33 0.32 0.22 number of activity recognition events 0.23 0.0 0.12
time at home 0.0 0.0 0.66 0.22 maximum heart rate 0.17 0.0 0.08
average time spent in a cluster 0.32 0.32 0.0 0.22 average heart rate 0.08 0.0 0.04
minimum time spent in a cluster 0.33 0.33 0.0 0.22 median heart rate 0.08 0.0 0.04
maximum time spent in a cluster 0.0 0.32 0.0 0.11 mode heart rate 0.08 0.0 0.04
number of device battery charge events 0.32 0.0 0.0 0.11 duration of phone discharges 0.0 0.0 0.0
duration of phone discharges 0.32 0.0 0.0 0.11 duration of battery charge events 0.0 0.0 0.0
ratio of stationary and moving time 0.0 0.33 0.0 0.11 maximum battery consumption rate 0.0 0.0 0.0
number of device battery discharge events 0.0 0.33 0.0 0.11 number of device battery discharge events 0.0 0.0 0.0
duration of sedentary activities 0.0 0.0 0.0 0.0 number of device battery charge events 0.0 0.0 0.0
average battery consumption rate 0.0 0.0 0.0 0.0 ratio of stationary and moving time 0.0 0.0 0.0
maximum battery consumption rate 0.0 0.0 0.0 0.0 average battery consumption rate 0.0 0.0 0.0
duration of battery charge events 0.0 0.0 0.0 0.0 duration with heart rate out of exercise zones 0.0 0.0 0.0
entropy of heart rate 0.0 0.0 0.0 0.0 minimum heart rate 0.0 0.0 0.0
duration with heart rate out of exercise zones 0.0 0.0 0.0 0.0 entropy of heart rate 0.0 0.0 0.0
MAVSs 0.32 MAVSs 0.19
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Between Groups Across Time Windows (BGAT) for All Rhythm Parameters

High vs. Low Cognitive Energy

Week 5 Week 10 Week 17 AVS;-

Between Time Windows Across
Week 5 vs. Week 10 vs. Week 17

roups (BTAG) for All Rhythm Parameters

High Cognitive Energy Low Cognitive Energy =~ AVS,«

average heart rate 0.97 0.32 0.0 0.43 time at home 0.66 0.82 0.74
mode heart rate 0.97 0.33 0.0 0.43 total distance traveled 0.49 0.74 0.61
median heart rate 0.97 0.33 0.0 0.43 average time spent in a cluster 0.48 0.73 0.61
total duration of sedentary bouts 0.33 0.97 0.0 0.43 minimum time spent in a cluster 0.48 0.73 0.61
mean step cadence 0.33 0.65 0.0 033 most common activity type 05 0.65 0.57
average number of steps 0.33 0.65 0.0 0.33 average movement speed 0.48 0.66 0.57
sum of steps 0.33 0.65 0.0 0.33 standard deviation of time spent in clusters 0.64 0.5 0.57
number of device battery charge events 0.32 0.0 0.65 0.32 total duration of vehicle activities 0.5 0.58 0.54
number of location transitions 0.0 0.66 0.0 0.22 standard deviation of steps 0.5 0.57 0.53
minimum heart rate 0.33 0.32 0.0 0.22 total duration on foot and on bicycle activities 0.57 0.49 0.53
difference between minimum and mode heart rate  0.33 0.32 0.0 0.22 normalized location entropy 0.5 0.5 0.5

maximum steps 0.33 0.33 0.0 0.22 location entropy 0.5 0.5 0.5

maximum duration of sedentary bouts 0.32 0.33 0.0 0.22 time spent at location outliers 0.5 0.5 0.5

number of significant locations 0.0 0.66 0.0 0.22 variance of movement speeds 0.49 0.5 0.5

number of activity recognition activities 0.33 0.32 0.0 0.22 number of location transitions 0.49 0.5 0.5

time at home 0.33 0.33 0.0 0.22 sum of steps 0.5 0.49 0.49
maximum time spent in a cluster 0.0 0.65 0.0 0.22 average number of steps 0.5 0.49 0.49
standard deviation of steps 0.33 0.32 0.0 0.22 mean step cadence 0.5 0.49 0.49
location entropy 0.0 0.66 0.0 0.22 number of significant locations 0.49 0.5 0.49
number of sedentary bouts 0.32 0.32 0.0 0.21 number of active wifi connections 0.5 0.48 0.49
number of activity recognition events 0.32 0.33 0.0 0.21 maximum steps 0.5 0.33 0.42
normalized location entropy 0.0 0.33 0.0 0.11 maximum time spent in a cluster 0.16 0.41 0.28
minimum time spent in a cluster 0.0 0.33 0.0 0.11 number of activity recognition activities 0.08 0.48 0.28
number of active wifi connections 0.0 033 0.0 0.11 total duration of sedentary bouts 0.47 0.08 0.28
average movement speed 0.32 0.0 0.0 0.11 maximum heart rate 0.4 0.16 0.28
variance of movement speeds 0.32 0.0 0.0 0.11 number of sedentary bouts 0.16 0.32 0.24
time spent at location outliers 0.0 0.32 0.0 0.11 standard deviation of heart rate 0.32 0.08 0.2

total distance traveled 0.0 0.32 0.0 0.11 maximum duration of sedentary bouts 0.25 0.16 0.2

entropy of heart rate 0.32 0.0 0.0 0.11 number of activity recognition events 0.0 0.4 0.2

average time spent in a cluster 0.0 033 0.0 0.11 average heart rate 039 0.0 0.2

duration of battery charge events 0.0 0.0 0.32 0.11 median heart rate 0.32 0.0 0.16
maximum heart rate 0.33 0.0 0.0 0.11 number of device battery charge events 0.24 0.08 0.16
minimum duration of sedentary bouts 0.0 033 0.0 0.11 difference between maximum and mode heart rate  0.16 0.16 0.16
duration of sedentary activities 0.33 0.0 0.0 0.11 average duration of sedentary bouts 0.25 0.0 0.12
average duration of sedentary bouts 0.0 033 0.0 0.11 minimum duration of sedentary bouts 0.24 0.0 0.12
maximum battery consumption rate 0.0 0.0 0.0 0.0 duration of sedentary activities 0.16 0.08 0.12
most common activity type 0.0 0.0 0.0 0.0 minimum heart rate 0.24 0.0 0.12
average battery consumption rate 0.0 0.0 0.0 0.0 mode heart rate 0.24 0.0 0.12
difference between maximum and mode heart rate 0.0 0.0 0.0 0.0 duration of battery charge events 0.24 0.0 0.12
number of device battery discharge events 0.0 0.0 0.0 0.0 maximum battery consumption rate 0.08 0.0 0.04
total duration on foot and on bicycle activities 0.0 0.0 0.0 0.0 average battery consumption rate 0.08 0.0 0.04
duration of phone discharges 0.0 0.0 0.0 0.0 duration of phone discharges 0.08 0.0 0.04
standard deviation of time spent in clusters 0.0 0.0 0.0 0.0 difference between minimum and mode heart rate  0.08 0.0 0.04
ratio of stationary and moving time 0.0 0.0 0.0 0.0 duration with heart rate out of exercise zones 0.08 0.0 0.04
standard deviation of heart rate 0.0 0.0 0.0 0.0 number of device battery discharge events 0.0 0.08 0.04
duration with heart rate out of exercise zones 0.0 0.0 0.0 0.0 ratio of stationary and moving time 0.0 0.0 0.0

total duration of vehicle activities 0.0 0.0 0.0 0.0 entropy of heart rate 0.0 0.0 0.0

MAVSg 0.15 MAVSg 0.29
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Between Groups Across Time Windows (BGAT) for All Rhythm Parameters

Between Time Windows Across Groups (BTAG) for All Rhythm Parameters

High vs. Low Emotional Energy Week 5 Week 10 Week 17 AVS;:  Week 5 vs. Week 10 vs. Week 17 High Emotional Energy Low Emotional Energy ~AVS;-

average duration of sedentary bouts 0.33 0.65 0.33 0.43 time at home 0.83 0.65 0.74
time at home 0.33 0.0 0.65 0.33 minimum time spent in a cluster 0.65 0.72 0.69
minimum duration of sedentary bouts 0.32 0.33 0.32 0.32 average time spent in a cluster 0.65 0.64 0.65
maximum duration of sedentary bouts 0.32 0.65 0.0 0.32 most common activity type 0.73 0.49 0.61
number of device battery charge events 0.0 0.0 0.65 0.22 number of active wifi connections 0.72 0.48 0.6
mean step cadence 0.0 0.33 0.32 0.22 average movement speed 0.66 0.5 0.58
total duration of sedentary bouts 0.0 0.65 0.0 0.22 location entropy 0.5 0.65 0.58
number of sedentary bouts 0.33 0.0 0.32 0.22 normalized location entropy 0.5 0.65 0.58
sum of steps 0.0 0.33 0.32 0.22 total distance traveled 0.66 0.5 0.58
average number of steps 0.0 033 0.32 0.22 number of significant locations 0.5 0.64 0.57
difference between minimum and mode heart rate  0.33 033 0.0 0.22 number of location transitions 0.57 0.57 0.57
standard deviation of steps 0.0 0.65 0.0 0.22 total duration of vehicle activities 0.5 0.5 0.5
maximum steps 0.0 0.65 0.0 0.22 variance of movement speeds 0.5 05 0.5
location entropy 066 00 0.0 0.22 time spent at location outliers 0.5 0.5 0.5
number of location transitions 0.66 0.0 0.0 0.22 standard deviation of steps 0.5 0.5 0.5
normalized location entropy 0.66 0.0 0.0 0.22 standard deviation of time spent in clusters 0.41 0.58 0.5
average movement speed 0.65 0.0 0.0 0.22 maximum steps 0.58 0.33 0.46
number of significant locations 0.66 0.0 0.0 0.22 total duration on foot and on bicycle activities 0.5 0.33 0.41
entropy of heart rate 0.32 0.0 033 0.21 sum of steps 0.56 0.25 0.41
standard deviation of time spent in clusters 0.32 032 0.0 0.21 mean step cadence 0.56 0.25 0.41
standard deviation of heart rate 0.33 0.0 0.0 0.11 average number of steps 0.56 0.25 0.41
median heart rate 0.32 0.0 0.0 0.11 maximum time spent in a cluster 0.31 0.32 0.32
mode heart rate 0.32 0.0 0.0 0.11 total duration of sedentary bouts 0.33 0.24 0.28
maximum heart rate 0.33 0.0 0.0 0.11 number of sedentary bouts 0.24 0.31 0.27
duration with heart rate out of exercise zones 0.0 0.0 0.33 0.11 median heart rate 0.47 0.0 0.23
duration of battery charge events 0.0 0.0 033 0.11 mode heart rate 0.47 0.0 0.23
time spent at location outliers 0.32 0.0 0.0 0.11 average heart rate 0.4 0.0 0.2
number of active wifi connections 0.33 0.0 0.0 0.11 maximum duration of sedentary bouts 0.4 0.0 0.2
average heart rate 0.32 0.0 0.0 0.11 maximum heart rate 0.33 0.0 0.17
average time spent in a cluster 0.0 0.0 0.32 0.11 minimum duration of sedentary bouts 0.33 0.0 0.16
number of device battery discharge events 0.0 0.0 0.0 0.0 average duration of sedentary bouts 0.32 0.0 0.16
difference between maximum and mode heart rate 0.0 0.0 0.0 0.0 difference between minimum and mode heart rate  0.24 0.08 0.16
total distance traveled 0.0 0.0 0.0 0.0 minimum heart rate 0.32 0.0 0.16
duration of sedentary activities 0.0 0.0 0.0 0.0 number of activity recognition activities 0.08 0.24 0.16
number of activity recognition events 0.0 0.0 0.0 0.0 difference between maximum and mode heart rate 0.0 0.31 0.16
total duration of vehicle activities 0.0 0.0 0.0 0.0 standard deviation of heart rate 0.08 0.22 0.15
most common activity type 0.0 0.0 0.0 0.0 duration of sedentary activities 0.0 0.15 0.08
total duration on foot and on bicycle activities 0.0 0.0 0.0 0.0 duration with heart rate out of exercise zones 0.08 0.0 0.04
maximum battery consumption rate 0.0 0.0 0.0 0.0 ratio of stationary and moving time 0.08 0.0 0.04
average battery consumption rate 0.0 0.0 0.0 0.0 number of device battery discharge events 0.0 0.0 0.0
ratio of stationary and moving time 0.0 0.0 0.0 0.0 number of activity recognition events 0.0 0.0 0.0
minimum time spent in a cluster 0.0 0.0 0.0 0.0 average battery consumption rate 0.0 0.0 0.0
maximum time spent in a cluster 0.0 0.0 0.0 0.0 duration of phone discharges 0.0 0.0 0.0
duration of phone discharges 0.0 0.0 0.0 0.0 duration of battery charge events 0.0 0.0 0.0
number of activity recognition activities 0.0 0.0 0.0 0.0 entropy of heart rate 0.0 0.0 0.0
minimum heart rate 0.0 0.0 0.0 0.0 maximum battery consumption rate 0.0 0.0 0.0
variance of movement speeds 0.0 0.0 0.0 0.0 number of device battery charge events 0.0 0.0 0.0
MAVSg 0.12 MAVSg 0.28
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Between Groups Across Time Windows (BGAT) for All Rhythm Parameters

High vs. Low Physical Energy

Week 5 Week 10 Week 17 AVS,«

Between Time Windows Acrc
Week 5 vs. Week 10 vs. Week 17

Groups (BTAG) for All Rhythm Parameters

High Physical Energy Low Physical Energy AVS;.

maximum steps 0.66 0.33 0.65 0.55 time at home 0.87 0.67 0.77
total duration of sedentary bouts 0.65 0.67 0.33 0.55 minimum time spent in a cluster 0.56 0.73 0.65
sum of steps 033 0.66 032 044 most common activity type 0.73 0.56 0.64
mean step cadence 033 0.66 032 044 average time spent in a cluster 0.55 0.74 0.64
maximum duration of sedentary bouts 0.66 0.66 0.0 0.44 average movement speed 0.48 0.74 0.61
average number of steps 0.33 0.66 0.32 0.44 maximum steps 0.5 0.65 0.57
average duration of sedentary bouts 0.66 0.33 0.0 0.33 total distance traveled 0.48 0.66 0.57
standard deviation of steps 0.33 0.33 0.33 0.33 standard deviation of steps 0.5 0.58 0.54
minimum duration of sedentary bouts 0.66 0.33 0.0 0.33 location entropy 0.5 0.58 0.54
average heart rate 0.65 0.0 0.33 0.33 variance of movement speeds 0.49 0.58 0.53
mode heart rate 0.65 0.0 0.33 0.33 total duration on foot and on bicycle activities 0.73 0.33 0.53
median heart rate 0.65 0.0 0.33 0.33 total duration of vehicle activities 0.5 0.5 0.5

number of sedentary bouts 0.33 0.67 0.0 0.33 normalized location entropy 0.5 0.5 0.5

minimum heart rate 0.65 0.0 0.32 0.32 time spent at location outliers 0.5 0.5 0.5

total distance traveled 0.66 0.0 0.0 0.22 number of significant locations 0.41 0.58 0.49
average movement speed 0.66 0.0 0.0 0.22 number of location transitions 0.49 0.5 0.49
time at home 0.66 0.0 0.0 0.22 number of active wifi connections 0.49 0.49 0.49
variance of movement speeds 0.66 0.0 0.0 0.22 standard deviation of time spent in clusters 0.41 0.5 0.46
entropy of heart rate 0.32 0.0 0.33 0.21 mean step cadence 0.49 0.33 0.41
duration of sedentary activities 033 0.0 0.0 0.11 sum of steps 0.49 0.33 0.41
standard deviation of heart rate 0.0 0.0 0.33 0.11 average number of steps 0.49 0.33 0.41
duration with heart rate out of exercise zones 0.0 0.0 0.32 0.11 maximum time spent in a cluster 0.16 0.47 0.32
maximum heart rate 0.0 0.0 0.33 0.11 total duration of sedentary bouts 0.41 0.16 0.29
difference between minimum and mode heart rate 0.0 0.0 0.32 0.11 number of sedentary bouts 0.41 0.16 0.29
difference between maximum and mode heart rate 0.0 0.0 033 0.11 difference between maximum and mode heart rate 0.0 0.49 0.24
number of significant locations 0.32 0.0 0.0 0.11 maximum duration of sedentary bouts 0.41 0.0 0.2

total duration on foot and on bicycle activities 0.0 0.32 0.0 0.11 maximum heart rate 0.32 0.08 0.2

number of location transitions 0.32 0.0 0.0 0.11 duration of sedentary activities 0.08 0.24 0.16
location entropy 0.32 0.0 0.0 0.11 median heart rate 0.31 0.0 0.16
number of activity recognition activities 0.33 0.0 0.0 0.11 mode heart rate 0.31 0.0 0.16
average time spent in a cluster 0.32 0.0 0.0 0.11 standard deviation of heart rate 0.23 0.08 0.16
number of active wifi connections 0.0 0.0 0.32 0.11 number of activity recognition activities 0.0 0.31 0.15
maximum battery consumption rate 0.0 0.0 0.0 0.0 minimum duration of sedentary bouts 0.25 0.0 0.12
time spent at location outliers 0.0 0.0 0.0 0.0 average duration of sedentary bouts 0.25 0.0 0.12
ratio of stationary and moving time 0.0 0.0 0.0 0.0 average heart rate 0.24 0.0 0.12
minimum time spent in a cluster 0.0 0.0 0.0 0.0 duration with heart rate out of exercise zones 0.24 0.0 0.12
maximum time spent in a cluster 0.0 0.0 0.0 0.0 number of activity recognition events 0.0 0.24 0.12
duration of phone discharges 0.0 0.0 0.0 0.0 entropy of heart rate 0.24 0.0 0.12
duration of battery charge events 0.0 0.0 0.0 0.0 minimum heart rate 0.23 0.0 0.12
average battery consumption rate 0.0 0.0 0.0 0.0 difference between minimum and mode heart rate  0.16 0.0 0.08
number of device battery discharge events 0.0 0.0 0.0 0.0 duration of battery charge events 0.08 0.0 0.04
number of device battery charge events 0.0 0.0 0.0 0.0 number of device battery discharge events 0.0 0.0 0.0

most common activity type 0.0 0.0 0.0 0.0 maximum battery consumption rate 0.0 0.0 0.0

total duration of vehicle activities 0.0 0.0 0.0 0.0 average battery consumption rate 0.0 0.0 0.0

normalized location entropy 0.0 0.0 0.0 0.0 number of device battery charge events 0.0 0.0 0.0

number of activity recognition events 0.0 0.0 0.0 0.0 duration of phone discharges 0.0 0.0 0.0

standard deviation of time spent in clusters 0.0 0.0 0.0 0.0 ratio of stationary and moving time 0.0 0.0 0.0

MAVSg 0.17 MAVSs 0.29
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